DB-ACO: A Deadline-Budget Constrained Ant Colony Optimization for Workflow Scheduling in Clouds

云计算 计算机科学 工作流程 蚁群优化算法 调度(生产过程) 预算约束 分布式计算 地铁列车时刻表 作业车间调度 蚁群 实时计算 数学优化 操作系统 数据库 算法 新古典经济学 经济 数学
作者
Siyuan Tao,Yuanqing Xia,Lingjuan Ye,Ce Yan,Runze Gao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1564-1579 被引量:13
标识
DOI:10.1109/tase.2023.3247973
摘要

With the development of cloud computing, a growing number of workflows are deployed in cloud platform that can dynamically provide cloud resources on demand for users. In clouds, one basic problem is how to schedule workflow under the deadline constraint and minimize the execution cost. As the capability of cloud resources getting higher, the required cost is also rising. Capability of some resources exceeds the need of users, which leads to higher cost, and the budget of users should be considered. In this paper, a novel scheduling algorithm, named DB-ACO, is proposed to minimize the execution cost for the workflow with deadline and budget constraints. DB-ACO is verified on four typical scientific workflows, and the experiments results show it outperforms four state-of-the-art methods, especially for CyberShake. Note to Practitioners —Budget and deadline are important requirements for users in cloud computing, which are used as constraints. Extensive works have been devoted to minimize the cost of workflows execution with different scheduling strategies. However, most of them only consider one single constraint and assume the constraint is simple and loose, which is impractical in actual scenarios due to higher requirement of users. This paper investigates a novel scheduling algorithm DB-ACO to optimize cost under budget and deadline. DB-ACO combines heuristic and meta-heuristic, it uses ant colony optimization to optimize the execution cost under the deadline and budget constraints: each ant sorts tasks on the basis of the combination of the pheromone trail and heuristic information, the deadline and budget are distributed fairly to each task by a novel distribution method, then the service selection rules are introduced to build solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maox1aoxin应助科研通管家采纳,获得30
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
迟大猫应助科研通管家采纳,获得10
1秒前
爱静静应助科研通管家采纳,获得10
1秒前
爱静静应助科研通管家采纳,获得10
1秒前
1秒前
3秒前
3秒前
3秒前
吴1发布了新的文献求助10
4秒前
kkx发布了新的文献求助10
5秒前
陈文文完成签到 ,获得积分10
5秒前
笑忘书完成签到,获得积分20
5秒前
6秒前
爱静静应助白三烯采纳,获得10
7秒前
7秒前
殇春秋发布了新的文献求助10
8秒前
高大清涟发布了新的文献求助50
9秒前
包容的剑发布了新的文献求助10
10秒前
10秒前
10秒前
张公子发布了新的文献求助10
11秒前
木脑子发布了新的文献求助30
11秒前
游艺发布了新的文献求助10
11秒前
doctorLi完成签到,获得积分20
12秒前
12秒前
13秒前
润雨发布了新的文献求助10
13秒前
Akim应助低空飞行采纳,获得10
13秒前
科研通AI5应助秦波采纳,获得10
14秒前
李健应助jy采纳,获得10
15秒前
微光完成签到,获得积分10
15秒前
奇趣糖发布了新的文献求助10
15秒前
15秒前
科研养猫猫完成签到,获得积分10
16秒前
16秒前
18秒前
英姑应助doctorLi采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737