An automatic identification method of imbalanced lithology based on Deep Forest and K-means SMOTE

过采样 岩性 鉴定(生物学) 计算机科学 数据挖掘 人工神经网络 滤波器(信号处理) 人工智能 地质学 模式识别(心理学) 岩石学 计算机视觉 计算机网络 植物 生物 带宽(计算)
作者
Xinyi Zhu,Hongbing Zhang,Quan Ren,Dailu Zhang,Fanxing Zeng,Xinjie Zhu,Lingyuan Zhang
标识
DOI:10.1016/j.geoen.2023.211595
摘要

Accurate identification of lithology is an important basis for oil and gas exploration and reservoir geological evaluation. Logging parameters often have a complex nonlinear relationship with lithology. With the development of artificial intelligence technology, a variety of data mining algorithms have been applied to lithology identification with logging data. However, due to the constraints of practical conditions, the number of labeled lithology samples is small and the imbalance between classes is obvious, which usually affect the results of lithology identification. In this paper, we proposed a hybrid unbalanced lithology identification method based on Deep Forest and K-means SMOTE to solve the above mentioned problems. Deep Forest is the first deep model of a non-differential form base learner which can perform layer-by-layer processing and feature enhancement. Compared with traditional shallow model, ensemble model and deep neural networks, it has the best performance with the accuracy of 96.17%. K-means SMOTE oversampling is able to filter subclusters and balance the dataset by oversampling only within safe regions, reducing interference from noise points and boundary ambiguity. We achieved further performance improvements in minority lithology classification via K-means SMOTE oversampling with the accuracy of 97.17%. The comprehensive evaluation results showed that the method proposed in this paper has a good effect on the identification of unbalanced lithology, and has a practical application prospect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
NexusExplorer应助李小狼不浪采纳,获得10
刚刚
lixiunan完成签到,获得积分10
1秒前
55555发布了新的文献求助10
1秒前
努力的大角牛完成签到,获得积分20
1秒前
酷波er应助zhang采纳,获得10
1秒前
Owen应助算了吧采纳,获得10
2秒前
2秒前
3秒前
自信南霜完成签到,获得积分10
3秒前
李东东完成签到 ,获得积分10
3秒前
4秒前
欣喜的以丹完成签到,获得积分10
5秒前
时渐惜完成签到,获得积分10
5秒前
布鲁鲁完成签到,获得积分10
6秒前
7秒前
害怕的身影完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
meo发布了新的文献求助20
10秒前
bkagyin应助Bonnienuit采纳,获得10
11秒前
赵雪完成签到,获得积分10
14秒前
14秒前
14秒前
南区食堂不好吃完成签到,获得积分10
14秒前
TT发布了新的文献求助10
15秒前
15秒前
aa应助青山采纳,获得10
15秒前
kingmantj发布了新的文献求助10
18秒前
汉堡包应助冷静水池采纳,获得10
18秒前
18秒前
55555完成签到,获得积分10
19秒前
李爱国应助飞天小女警采纳,获得10
20秒前
超人不会飞完成签到 ,获得积分10
22秒前
华仔应助iia采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560457
求助须知:如何正确求助?哪些是违规求助? 3134520
关于积分的说明 9407839
捐赠科研通 2834665
什么是DOI,文献DOI怎么找? 1558196
邀请新用户注册赠送积分活动 727968
科研通“疑难数据库(出版商)”最低求助积分说明 716641