An automatic identification method of imbalanced lithology based on Deep Forest and K-means SMOTE

过采样 岩性 鉴定(生物学) 计算机科学 数据挖掘 人工神经网络 滤波器(信号处理) 人工智能 地质学 模式识别(心理学) 岩石学 计算机视觉 计算机网络 植物 生物 带宽(计算)
作者
Xinyi Zhu,Hongbing Zhang,Quan Ren,Dailu Zhang,Fanxing Zeng,Xinjie Zhu,Lingyuan Zhang
标识
DOI:10.1016/j.geoen.2023.211595
摘要

Accurate identification of lithology is an important basis for oil and gas exploration and reservoir geological evaluation. Logging parameters often have a complex nonlinear relationship with lithology. With the development of artificial intelligence technology, a variety of data mining algorithms have been applied to lithology identification with logging data. However, due to the constraints of practical conditions, the number of labeled lithology samples is small and the imbalance between classes is obvious, which usually affect the results of lithology identification. In this paper, we proposed a hybrid unbalanced lithology identification method based on Deep Forest and K-means SMOTE to solve the above mentioned problems. Deep Forest is the first deep model of a non-differential form base learner which can perform layer-by-layer processing and feature enhancement. Compared with traditional shallow model, ensemble model and deep neural networks, it has the best performance with the accuracy of 96.17%. K-means SMOTE oversampling is able to filter subclusters and balance the dataset by oversampling only within safe regions, reducing interference from noise points and boundary ambiguity. We achieved further performance improvements in minority lithology classification via K-means SMOTE oversampling with the accuracy of 97.17%. The comprehensive evaluation results showed that the method proposed in this paper has a good effect on the identification of unbalanced lithology, and has a practical application prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助30
刚刚
哈哈哈666发布了新的文献求助10
1秒前
卓Celina完成签到,获得积分10
2秒前
bkagyin应助KYRIELIU采纳,获得10
3秒前
3秒前
FanFan应助沧笙踏歌采纳,获得30
4秒前
皮皮凯完成签到,获得积分10
4秒前
ybb完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助gyj1采纳,获得10
5秒前
5秒前
小蘑菇应助淡然钢笔采纳,获得10
7秒前
7秒前
orixero应助八戒的梦想采纳,获得10
7秒前
轻松的丹寒完成签到,获得积分10
8秒前
眯眯眼的裙子完成签到,获得积分10
9秒前
万能图书馆应助稳重的烙采纳,获得10
10秒前
11秒前
自然1111发布了新的文献求助10
11秒前
12秒前
爆米花应助轻松的丹寒采纳,获得10
12秒前
May应助灰灰灰采纳,获得20
12秒前
奋斗灵竹完成签到,获得积分10
13秒前
13秒前
支凌瑶发布了新的文献求助10
13秒前
FashionBoy应助周小鱼采纳,获得10
14秒前
15秒前
haha完成签到,获得积分20
15秒前
15秒前
英姑应助机灵的指甲油采纳,获得10
16秒前
彬彬完成签到,获得积分10
17秒前
haha发布了新的文献求助10
17秒前
shasha完成签到 ,获得积分10
18秒前
18秒前
大模型应助迷人绿茶采纳,获得10
18秒前
1526918042发布了新的文献求助10
19秒前
19秒前
winew完成签到 ,获得积分10
19秒前
包容可乐完成签到,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186