Linking random forest and auxiliary factors for extracting the major economic forests in the mountainous areas of southwestern Yunnan Province, China

中国 地理 随机森林 农林复合经营 生态学 环境保护 环境科学 生物 考古 计算机科学 机器学习
作者
Pei Huang,Xiaoqing Zhao,Junwei Pu,Zexian Gu,Yan Feng,Shijie Zhou,Xinyu Shi,Yuanyuan Tang,Pinliang Dong
出处
期刊:Ecological Indicators [Elsevier]
卷期号:148: 110025-110025
标识
DOI:10.1016/j.ecolind.2023.110025
摘要

Forests are generally extracted from remotely sensed images based on the spectral features, ignoring other important auxiliary information, and the techniques of precise extraction need to be further improved. By using the Sentinel–2 image and auxiliary factors (AFs) including site conditions (SCs) and vegetation indices (VIs), the random forest model with AFs (RF–AFs) was adopted for the extraction of the economic forests in Lancang County, which is a mountainous area with rich biodiversity and is witnessing rapid development of economic forests in Yunnan province of China. The results obtained using the RF–AFs model were compared with those obtained using the random forest model without AFs (RF). The results were as follows: (1) The kappa coefficient for extracting the first–level land use obtained using the RF model was 0.9531. Lancang County is dominated by forests, accounting for 73.76% of the total area. (2) After parameter optimization, the RF–AFs model yielded the highest accuracy in the extraction of the second–level forests, with a kappa coefficient value of 0.9493, which was 14.69% higher than that of the RF model. Thus, the RF–AFs model is more suitable for the precise extraction of economic forests. (3) The evaluation results of the factors’ importance of the RF–AFs model showed that the cumulative importance values of SCs such as temperature (TEM), elevation (EL), precipitation (PRE) and VIs such as plant senescence reflectance index (PSRI), enhanced vegetation index (EVI), transformed soil–adjusted vegetation index (TSAVI) was 76.09%, indicating that they were the main factors for the extraction of economic forests. (4) Economic forests are dominated by Simao pines in Lancang County, which are mainly distributed in the central, southwestern and northern regions, accounting for 31.37% of forests area. The proportion of tea plantations, eucalyptus, and rubber trees is 9.05%, 6.71%, and 3.05% of forests area, respectively. The RF–AFs model is conducive for precisely extracting the economic forests and is thus of great significance in studying the ecological and environmental effects of economic forests, performing forestry management, and maintaining regional ecological security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chao Liu完成签到 ,获得积分10
2秒前
9秒前
9秒前
10秒前
lll发布了新的文献求助10
10秒前
陈陈发布了新的文献求助10
13秒前
梦梦完成签到 ,获得积分10
14秒前
16秒前
加减乘除发布了新的文献求助10
17秒前
饱满语风完成签到 ,获得积分10
23秒前
花生完成签到 ,获得积分10
26秒前
牙瓜完成签到 ,获得积分10
32秒前
33秒前
小星星完成签到 ,获得积分10
34秒前
润润润完成签到 ,获得积分10
35秒前
坟里唱情歌完成签到 ,获得积分10
36秒前
满城烟沙完成签到 ,获得积分10
36秒前
sangxue完成签到 ,获得积分10
37秒前
zgd完成签到 ,获得积分10
37秒前
杏林靴子完成签到,获得积分10
38秒前
鳗鱼匕完成签到 ,获得积分10
41秒前
47秒前
i2stay完成签到,获得积分10
47秒前
崩溃发布了新的文献求助10
52秒前
laohu完成签到,获得积分10
53秒前
拓跋傲薇完成签到,获得积分10
1分钟前
单身的溪流完成签到 ,获得积分10
1分钟前
li完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
和平使命应助学术潘采纳,获得10
1分钟前
yang完成签到 ,获得积分10
1分钟前
1111完成签到,获得积分10
1分钟前
Driscoll完成签到 ,获得积分10
1分钟前
斯文的天奇完成签到 ,获得积分10
1分钟前
长隆完成签到 ,获得积分10
1分钟前
1分钟前
nt1119完成签到 ,获得积分10
1分钟前
角鸮完成签到,获得积分10
1分钟前
1分钟前
ZX801完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388565
求助须知:如何正确求助?哪些是违规求助? 3000831
关于积分的说明 8793912
捐赠科研通 2687068
什么是DOI,文献DOI怎么找? 1472001
科研通“疑难数据库(出版商)”最低求助积分说明 680683
邀请新用户注册赠送积分活动 673317