计算机科学
稀疏矩阵
解算器
计算科学
并行计算
多边形网格
计算
LU分解
离散化
稳健性(进化)
超级计算机
基质(化学分析)
线性代数
稀疏逼近
矩阵分解
算法
计算机图形学(图像)
数学
材料科学
数学分析
生物化学
特征向量
物理
化学
几何学
量子力学
复合材料
基因
高斯分布
程序设计语言
作者
Ahmad Abdelfattah,Pieter Ghysels,Wajih Boukaram,Stanimire Tomov,Xiaoye Sherry Li,Jack Dongarra
标识
DOI:10.1109/sc41404.2022.00031
摘要
Many scientific applications rely on sparse direct solvers for their numerical robustness. However, performance optimization for these solvers remains a challenging task, especially on GPUs. This is due to workloads of small dense matrices that are different in size. Matrix decompositions on such irregular workloads are rarely addressed on GPUs. This paper addresses irregular workloads of matrix computations on GPUs, and their application to accelerate sparse direct solvers. We design an interface for the basic matrix operations supporting problems of different sizes. The interface enables us to develop irrLU-GPU, an LU decomposition on matrices of different sizes. We demonstrate the impact of irrLU-GPU on sparse direct LU solvers using NVIDIA and AMD GPUs. Experimental results are shown for a sparse direct solver based on a multifrontal sparse LU decomposition applied to linear systems arising from the simulation, using finite element discretization on unstructured meshes, of a high-frequency indefinite Maxwell problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI