Deep learning-based social media mining for user experience analysis: A case study of smart home products

社会化媒体 计算机科学 用户体验设计 产品(数学) 用户生成的内容 用户组 联想(心理学) 深度学习 人机交互 万维网 数据科学 人工智能 心理学 几何学 数学 心理治疗师
作者
Juite Wang,Y.-L. Liu
出处
期刊:Technology in Society [Elsevier]
卷期号:73: 102220-102220 被引量:6
标识
DOI:10.1016/j.techsoc.2023.102220
摘要

Understanding and enhancing user experience (UX) is crucial for new product innovation. Abundant user-generated content (UGC) from social media contains information about customers' product experience and provides an alternative channel for firms to understand UX and improve their products. However, only a few studies have focused on this issue. This research develops a deep learning-based methodology to identify the major UX elements from UGC and analyze their relationships for improving customers' product experiences. The state-of-the-art deep learning approach BERT (Bidirectional Encoder Representations from Transformers) is used to identify the major UX elements from UGC. The Plutchik's wheel of emotions model is used to elaborate users' complex emotional experiences. Association rule mining (ARM) is employed to extract significant patterns of association between the major UX elements. The UGC data from an online discussion group for smart home products is used as an example. The results demonstrate that the methodology can effectively identify relevant UX content and the important relationships between major UX elements for improving products and services. Further, the methodology can help companies better understand UX based on multiple emotional states and develop actions that respond more effectively to user behaviors triggered by their emotional states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂难敌发布了新的文献求助10
刚刚
刚刚
wanci应助小郑采纳,获得10
1秒前
Ma完成签到 ,获得积分20
2秒前
悦悦呀发布了新的文献求助10
2秒前
3秒前
4秒前
聂难敌完成签到,获得积分10
5秒前
倩迷谜完成签到,获得积分0
6秒前
充电宝应助kelo采纳,获得30
6秒前
6秒前
半胱氨酸完成签到,获得积分10
8秒前
刘坦苇发布了新的文献求助30
9秒前
深情安青应助JFP采纳,获得10
10秒前
11秒前
阿玖完成签到,获得积分10
12秒前
李健应助ju龙哥采纳,获得10
13秒前
14秒前
明理从露发布了新的文献求助10
16秒前
17秒前
18秒前
山橘月发布了新的文献求助10
18秒前
19秒前
19秒前
Singularity举报大力的进求助涉嫌违规
20秒前
鱼鱼鱼发布了新的文献求助30
22秒前
22秒前
卡皮巴拉发布了新的文献求助10
22秒前
23秒前
kelo发布了新的文献求助30
24秒前
CipherSage应助xxx采纳,获得10
24秒前
123完成签到,获得积分10
24秒前
毛豆应助manan采纳,获得10
24秒前
ju龙哥发布了新的文献求助10
25秒前
YikeLizi发布了新的文献求助10
25秒前
Da-ming完成签到,获得积分10
25秒前
852应助YuenYuen采纳,获得10
26秒前
26秒前
26秒前
jeff发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459337
求助须知:如何正确求助?哪些是违规求助? 3053819
关于积分的说明 9038735
捐赠科研通 2743154
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664