清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Toward Robust Hierarchical Federated Learning in Internet of Vehicles

计算机科学 互联网 人工智能 万维网
作者
Hongliang Zhou,Yifeng Zheng,Hejiao Huang,Jiangang Shu,Xiaohua Jia
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 5600-5614 被引量:22
标识
DOI:10.1109/tits.2023.3243003
摘要

The rapid growth of the Internet of Vehicles (IoV) paradigm sparks the generation of large volumes of distributed data at vehicles, which can be harnessed to build models for intelligent applications. Federated learning has recently received wide attentions, which allows model training over distributed datasets without requiring raw datasets to be shared out. However, federated learning is known to be vulnerable to poisoning attacks, where malicious clients may manipulate the local datasets or model updates to corrupt the global model. Such attacks have to be countered when federated learning is adopted in IoV systems, given that the training process is distributed among a large number of vehicles in an open environment. In addition, IoV systems present a hierarchical architecture in practice where other types of nodes sit between the cloud server and vehicles, allowing intermediate aggregation for reducing overall training latency. Yet the intermediate aggregation nodes may also pose threats. In this paper, we propose a robust hierarchical federated learning framework named RoHFL, which allows hierarchical federated learning to be suitably applied in the IoV with robustness against poisoning attacks. We develop a robust model aggregation scheme that contains a logarithm-based normalization mechanism to cope with scaled gradients from malicious vehicles. We integrate the notion of reputation into the aggregation process and develop a scheme for reputation updating. We provide a formal analysis of RoHFL's convergence guarantees. Experiment results over several popular datasets demonstrate the promising performance of RoHFL, which is superior to prior work in the robustness against poisoning attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪完成签到,获得积分10
28秒前
zwy109完成签到 ,获得积分10
36秒前
骆凤灵完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
CC完成签到,获得积分10
1分钟前
pass完成签到 ,获得积分10
1分钟前
曙光完成签到,获得积分10
2分钟前
CipherSage应助uro-wu采纳,获得10
3分钟前
4分钟前
uro-wu发布了新的文献求助10
4分钟前
小二郎应助ldy539采纳,获得10
4分钟前
小脚丫完成签到 ,获得积分10
4分钟前
4分钟前
ldy539发布了新的文献求助10
4分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
传奇3应助璀璨的饺子采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
NN完成签到 ,获得积分10
6分钟前
史前巨怪完成签到,获得积分10
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
uro-wu完成签到,获得积分10
7分钟前
宇文非笑完成签到 ,获得积分10
9分钟前
李爱国应助璀璨的饺子采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
SciGPT应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
9分钟前
研友_nEWRJ8发布了新的文献求助10
9分钟前
茶茶完成签到,获得积分10
10分钟前
简因完成签到 ,获得积分10
10分钟前
紫熊完成签到,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
Shicheng发布了新的文献求助10
11分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422896
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903959
捐赠科研通 2710724
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682341