Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning

计算机科学 判别式 人工智能 代表(政治) 特征学习 特征(语言学) 卷积神经网络 山崩 领域(数学分析) 边界(拓扑) 模式识别(心理学) 一般化 遥感 地理 地质学 数学 哲学 数学分析 政治学 岩土工程 法学 政治 语言学
作者
Xiaokang Zhang,Weikang Yu,Man-On Pun,Wenzhong Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 1-17 被引量:80
标识
DOI:10.1016/j.isprsjprs.2023.01.018
摘要

Landslide mapping via pixel-wise classification of remote sensing imagery is essential for hazard prevention and risk assessment. Deep-learning-based change detection greatly aids landslide mapping by identifying the down-slope movement of soil, rock and other materials from bitemporal images, benefiting from the feature representation capabilities of convolutional neural networks. However, these networks rely on large amounts of pixel-level annotated data to achieve their promising performance and they normally exhibit weak generalization capability on heterogeneous image data from unseen domains. To address these issues, we propose a prototype-guided domain-aware progressive representation learning (PG-DPRL) method for cross-domain landslide mapping from large-scale remote sensing images based on the multitarget domain adaptation (MTDA) technique. PG-DPRL attempts to learn a shared landslide mapping network that performs well in multiple target domains with no additional effort for sample annotation. Specifically, PG-DPRL adopts a near-to-far adaptation strategy to gradually align the representation distributions of all target domains with the source domain, considering discrepancies between them. On this basis, cross-domain prototype learning is exploited to generate reliable domain-specific pseudo-labels and aggregate representations across domains to learn a shared decision boundary. In each DPRL step, the prototype-guided adversarial learning (PGAL) algorithm is performed to achieve category-wise representation alignment and improve the discriminative capability of representations by introducing the Wasserstein distance metric and cross-domain prototype consistency (CPC) loss. Experiments on a global very-high-resolution landslide mapping (GVLM) dataset consisting of 17 heterogeneous domains from different landslide sites demonstrate the effectiveness and robustness of PG-DPRL. It considerably improves the transferability of landslide mapping networks and outperforms several state-of-the-art approaches in terms of total and average accuracy metrics among all target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wise111发布了新的文献求助10
刚刚
思源应助张昊采纳,获得10
1秒前
1秒前
2秒前
Eternal发布了新的文献求助10
3秒前
石友瑶发布了新的文献求助10
3秒前
3秒前
研友_Z6Qrbn发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助chem采纳,获得10
3秒前
科研通AI5应助Guozixin采纳,获得30
3秒前
4秒前
liuliu发布了新的文献求助10
5秒前
是danoo完成签到,获得积分10
7秒前
002完成签到,获得积分10
7秒前
orixero应助llllda采纳,获得10
7秒前
陈蕴兮发布了新的文献求助10
7秒前
Xie发布了新的文献求助10
8秒前
jiemo_111完成签到,获得积分10
9秒前
Criminology34应助儒雅熊猫采纳,获得10
9秒前
9秒前
ceasar发布了新的文献求助10
10秒前
10秒前
lyj完成签到 ,获得积分10
11秒前
Hello应助研友_ZbP41L采纳,获得10
12秒前
神勇虾头发布了新的文献求助10
12秒前
Passskd发布了新的文献求助10
13秒前
14秒前
15秒前
希望天下0贩的0应助Eternal采纳,获得10
16秒前
韩恩轩完成签到,获得积分10
16秒前
zzzzzzzzzzzzx发布了新的文献求助10
16秒前
研友_VZG7GZ应助慕瓜采纳,获得10
17秒前
享受不良诱惑完成签到,获得积分10
17秒前
Theta完成签到,获得积分10
18秒前
18秒前
上官若男应助独孤妖月采纳,获得10
19秒前
石友瑶完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920