Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning

计算机科学 判别式 人工智能 代表(政治) 特征学习 特征(语言学) 卷积神经网络 山崩 领域(数学分析) 边界(拓扑) 模式识别(心理学) 一般化 遥感 地理 地质学 数学 哲学 数学分析 政治学 岩土工程 法学 政治 语言学
作者
Xiaokang Zhang,Weikang Yu,Man-On Pun,Wenzhong Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 1-17 被引量:75
标识
DOI:10.1016/j.isprsjprs.2023.01.018
摘要

Landslide mapping via pixel-wise classification of remote sensing imagery is essential for hazard prevention and risk assessment. Deep-learning-based change detection greatly aids landslide mapping by identifying the down-slope movement of soil, rock and other materials from bitemporal images, benefiting from the feature representation capabilities of convolutional neural networks. However, these networks rely on large amounts of pixel-level annotated data to achieve their promising performance and they normally exhibit weak generalization capability on heterogeneous image data from unseen domains. To address these issues, we propose a prototype-guided domain-aware progressive representation learning (PG-DPRL) method for cross-domain landslide mapping from large-scale remote sensing images based on the multitarget domain adaptation (MTDA) technique. PG-DPRL attempts to learn a shared landslide mapping network that performs well in multiple target domains with no additional effort for sample annotation. Specifically, PG-DPRL adopts a near-to-far adaptation strategy to gradually align the representation distributions of all target domains with the source domain, considering discrepancies between them. On this basis, cross-domain prototype learning is exploited to generate reliable domain-specific pseudo-labels and aggregate representations across domains to learn a shared decision boundary. In each DPRL step, the prototype-guided adversarial learning (PGAL) algorithm is performed to achieve category-wise representation alignment and improve the discriminative capability of representations by introducing the Wasserstein distance metric and cross-domain prototype consistency (CPC) loss. Experiments on a global very-high-resolution landslide mapping (GVLM) dataset consisting of 17 heterogeneous domains from different landslide sites demonstrate the effectiveness and robustness of PG-DPRL. It considerably improves the transferability of landslide mapping networks and outperforms several state-of-the-art approaches in terms of total and average accuracy metrics among all target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助WR采纳,获得10
刚刚
lzw1226完成签到,获得积分10
1秒前
Ariel发布了新的文献求助10
3秒前
5秒前
6秒前
tuojiang00发布了新的文献求助30
6秒前
小张完成签到,获得积分20
6秒前
Sss发布了新的文献求助10
7秒前
小蘑菇应助黄垚采纳,获得10
7秒前
8秒前
小张发布了新的文献求助10
9秒前
怡然含桃发布了新的文献求助10
11秒前
Ava应助田野采纳,获得10
11秒前
iiio完成签到,获得积分10
11秒前
槐序深巷完成签到 ,获得积分10
12秒前
13秒前
丘比特应助tuojiang00采纳,获得10
13秒前
14秒前
15秒前
暴富完成签到,获得积分10
15秒前
在水一方应助张张采纳,获得10
16秒前
宋一发布了新的文献求助30
16秒前
无花果应助怡然含桃采纳,获得10
17秒前
17秒前
17秒前
CodeCraft应助zhxia采纳,获得10
18秒前
18秒前
19秒前
20秒前
everglow发布了新的文献求助10
20秒前
20秒前
21秒前
破风老司机完成签到,获得积分10
21秒前
ly123发布了新的文献求助10
21秒前
21秒前
搜集达人应助ssslls采纳,获得10
21秒前
情怀应助朱砂采纳,获得10
22秒前
潇潇雨歇发布了新的文献求助10
22秒前
852应助小张采纳,获得10
22秒前
乂氼完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632944
求助须知:如何正确求助?哪些是违规求助? 4029107
关于积分的说明 12466293
捐赠科研通 3715327
什么是DOI,文献DOI怎么找? 2050021
邀请新用户注册赠送积分活动 1081627
科研通“疑难数据库(出版商)”最低求助积分说明 963954