Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning

计算机科学 判别式 人工智能 代表(政治) 特征学习 特征(语言学) 卷积神经网络 山崩 领域(数学分析) 边界(拓扑) 模式识别(心理学) 一般化 遥感 地理 地质学 数学 哲学 数学分析 政治学 岩土工程 法学 政治 语言学
作者
Xiaokang Zhang,Weikang Yu,Man-On Pun,Wenzhong Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 1-17 被引量:51
标识
DOI:10.1016/j.isprsjprs.2023.01.018
摘要

Landslide mapping via pixel-wise classification of remote sensing imagery is essential for hazard prevention and risk assessment. Deep-learning-based change detection greatly aids landslide mapping by identifying the down-slope movement of soil, rock and other materials from bitemporal images, benefiting from the feature representation capabilities of convolutional neural networks. However, these networks rely on large amounts of pixel-level annotated data to achieve their promising performance and they normally exhibit weak generalization capability on heterogeneous image data from unseen domains. To address these issues, we propose a prototype-guided domain-aware progressive representation learning (PG-DPRL) method for cross-domain landslide mapping from large-scale remote sensing images based on the multitarget domain adaptation (MTDA) technique. PG-DPRL attempts to learn a shared landslide mapping network that performs well in multiple target domains with no additional effort for sample annotation. Specifically, PG-DPRL adopts a near-to-far adaptation strategy to gradually align the representation distributions of all target domains with the source domain, considering discrepancies between them. On this basis, cross-domain prototype learning is exploited to generate reliable domain-specific pseudo-labels and aggregate representations across domains to learn a shared decision boundary. In each DPRL step, the prototype-guided adversarial learning (PGAL) algorithm is performed to achieve category-wise representation alignment and improve the discriminative capability of representations by introducing the Wasserstein distance metric and cross-domain prototype consistency (CPC) loss. Experiments on a global very-high-resolution landslide mapping (GVLM) dataset consisting of 17 heterogeneous domains from different landslide sites demonstrate the effectiveness and robustness of PG-DPRL. It considerably improves the transferability of landslide mapping networks and outperforms several state-of-the-art approaches in terms of total and average accuracy metrics among all target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的人杰完成签到,获得积分10
刚刚
LawShu完成签到 ,获得积分10
2秒前
喵喵完成签到 ,获得积分10
3秒前
xj_yjl完成签到,获得积分10
4秒前
科研通AI2S应助奋斗不止采纳,获得10
5秒前
chaohuiwang完成签到,获得积分10
6秒前
科研通AI2S应助张zzz采纳,获得10
7秒前
雨相所至完成签到,获得积分10
7秒前
令狐擎宇完成签到,获得积分10
7秒前
8秒前
wyy完成签到,获得积分10
9秒前
小马甲应助可可h采纳,获得10
10秒前
Sea完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
张zzz完成签到,获得积分10
12秒前
13秒前
Alisha完成签到,获得积分10
13秒前
激流勇进wb完成签到 ,获得积分10
13秒前
Jasen完成签到 ,获得积分10
15秒前
16秒前
18秒前
摆烂完成签到 ,获得积分10
18秒前
廉乐儿完成签到,获得积分10
18秒前
友好盼波完成签到,获得积分10
19秒前
19秒前
peipei完成签到,获得积分10
19秒前
tanxiao完成签到 ,获得积分10
20秒前
橘子小西完成签到 ,获得积分10
21秒前
22秒前
踏实天磊完成签到 ,获得积分10
22秒前
rain完成签到,获得积分0
23秒前
听风发布了新的文献求助10
23秒前
廉乐儿发布了新的文献求助10
24秒前
KKLD完成签到,获得积分10
24秒前
自觉画笔完成签到 ,获得积分10
27秒前
祖寻菡发布了新的文献求助10
28秒前
123完成签到,获得积分10
28秒前
听风完成签到,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229804
求助须知:如何正确求助?哪些是违规求助? 2877334
关于积分的说明 8198826
捐赠科研通 2544785
什么是DOI,文献DOI怎么找? 1374645
科研通“疑难数据库(出版商)”最低求助积分说明 647033
邀请新用户注册赠送积分活动 621851