Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning

计算机科学 判别式 人工智能 代表(政治) 特征学习 特征(语言学) 卷积神经网络 山崩 领域(数学分析) 边界(拓扑) 模式识别(心理学) 一般化 遥感 地理 地质学 数学 哲学 数学分析 政治学 岩土工程 法学 政治 语言学
作者
Xiaokang Zhang,Weikang Yu,Man-On Pun,Wenzhong Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 1-17 被引量:51
标识
DOI:10.1016/j.isprsjprs.2023.01.018
摘要

Landslide mapping via pixel-wise classification of remote sensing imagery is essential for hazard prevention and risk assessment. Deep-learning-based change detection greatly aids landslide mapping by identifying the down-slope movement of soil, rock and other materials from bitemporal images, benefiting from the feature representation capabilities of convolutional neural networks. However, these networks rely on large amounts of pixel-level annotated data to achieve their promising performance and they normally exhibit weak generalization capability on heterogeneous image data from unseen domains. To address these issues, we propose a prototype-guided domain-aware progressive representation learning (PG-DPRL) method for cross-domain landslide mapping from large-scale remote sensing images based on the multitarget domain adaptation (MTDA) technique. PG-DPRL attempts to learn a shared landslide mapping network that performs well in multiple target domains with no additional effort for sample annotation. Specifically, PG-DPRL adopts a near-to-far adaptation strategy to gradually align the representation distributions of all target domains with the source domain, considering discrepancies between them. On this basis, cross-domain prototype learning is exploited to generate reliable domain-specific pseudo-labels and aggregate representations across domains to learn a shared decision boundary. In each DPRL step, the prototype-guided adversarial learning (PGAL) algorithm is performed to achieve category-wise representation alignment and improve the discriminative capability of representations by introducing the Wasserstein distance metric and cross-domain prototype consistency (CPC) loss. Experiments on a global very-high-resolution landslide mapping (GVLM) dataset consisting of 17 heterogeneous domains from different landslide sites demonstrate the effectiveness and robustness of PG-DPRL. It considerably improves the transferability of landslide mapping networks and outperforms several state-of-the-art approaches in terms of total and average accuracy metrics among all target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助滑稽剑客采纳,获得10
刚刚
可耐的无剑完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助王三采纳,获得10
刚刚
乔乔兔应助zwenng采纳,获得10
1秒前
李子发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
小宋发布了新的文献求助10
2秒前
lalala发布了新的文献求助10
3秒前
Once完成签到,获得积分10
4秒前
Entrant完成签到,获得积分10
4秒前
4秒前
李爱国应助哈哈哈哈采纳,获得10
4秒前
可爱的函函应助詹雪晴采纳,获得10
5秒前
5秒前
5秒前
jzmupyj发布了新的文献求助10
6秒前
8秒前
幸福安白完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
Cymatics完成签到,获得积分10
10秒前
深情安青应助鑫鑫采纳,获得10
10秒前
yaoyao发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
iNk应助XxxPessimist1c采纳,获得10
11秒前
fd163c应助XxxPessimist1c采纳,获得10
11秒前
woshidahunzi发布了新的文献求助10
11秒前
Pupil完成签到,获得积分10
11秒前
完美世界应助易千采纳,获得10
12秒前
13秒前
13秒前
luqi发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助一十六采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636