Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique

卷积神经网络 侵染 人工智能 有害生物分析 计算机科学 机器视觉 农业 深度学习 机器学习 模式识别(心理学) 农业工程 园艺 生物 生态学 工程类
作者
Ramazan Hadipour-Rokni,Ezzatollah Askari Asli‐Ardeh,Ahmad Jahanbakhshi,Iman Esmaili paeen-Afrakoti,Sajad Sabzi
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106611-106611 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.106611
摘要

Plant pests and diseases play a significant role in reducing the quality of agricultural products. As one of the most important plant pathogens, pests like Mediterranean fruit fly cause significant damage to crops and thus annually farmers face a lot of loss in their products. Therefore, the use of modern and non-destructive methods such as machine vision systems and deep learning for early detection of pests in agricultural products is of particular importance. In this study, citrus fruit images were taken in three stages: 1) before pest infestation, 2) beginning of fruit infestation, and 3) eight days after the second stage, in natural light conditions (7000–11,000 lux). A total of 1519 images were prepared for all classes. To classify the images, 70% of the images were used for the network training stage, 10% and 20% of the images were used for the validation and testing stages. Four pre-trained CNN models, namely ResNet-50, GoogleNet, VGG-16 and AlexNet as well as the SGDm, RMSProp and Adam optimization algorithms were used to identify and classify healthy fruit and fruit infected with the Mediterranean fly. The results of evaluating the models in the pest outbreak stage showed that the VGG-16 model with the help of SGDm algorithm had the best efficiency with the highest detection accuracy and F1 of 98.33% and 98.36%, respectively. The evaluation of the third stage showed that the AlexNet model with the help of SGDm algorithm had the best result with the highest detection accuracy and F1 of 99.33% and 99.34%, respectively. AlexNet model using SGDm optimization algorithm had the shortest network training time (323 s). The results of this study showed that convolutional neural network method and machine vision system can be effective in controlling and managing pests in orchards and other agricultural products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pan20完成签到,获得积分10
1秒前
白日焰火发布了新的文献求助10
1秒前
lyf发布了新的文献求助30
1秒前
1秒前
janice发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
4秒前
叶财财发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
不呐呐发布了新的文献求助30
6秒前
ding应助enen采纳,获得10
7秒前
7秒前
陈晓旭发布了新的文献求助10
7秒前
东东发布了新的文献求助10
7秒前
SciGPT应助emilybei采纳,获得10
8秒前
刚国忠发布了新的文献求助10
8秒前
叶财财完成签到,获得积分10
9秒前
Xu发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
zyfzyf完成签到,获得积分10
9秒前
科研通AI6应助川川采纳,获得10
10秒前
10秒前
科研通AI6应助火火木采纳,获得30
11秒前
will完成签到,获得积分10
11秒前
Hello应助小田睡不醒采纳,获得10
11秒前
11秒前
香蕉觅云应助荒野风采纳,获得10
11秒前
12秒前
12秒前
阳光发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781