Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique

卷积神经网络 侵染 人工智能 有害生物分析 计算机科学 机器视觉 农业 深度学习 机器学习 模式识别(心理学) 农业工程 园艺 生物 生态学 工程类
作者
Ramazan Hadipour-Rokni,Ezzatollah Askari Asli‐Ardeh,Ahmad Jahanbakhshi,Iman Esmaili paeen-Afrakoti,Sajad Sabzi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106611-106611 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.106611
摘要

Plant pests and diseases play a significant role in reducing the quality of agricultural products. As one of the most important plant pathogens, pests like Mediterranean fruit fly cause significant damage to crops and thus annually farmers face a lot of loss in their products. Therefore, the use of modern and non-destructive methods such as machine vision systems and deep learning for early detection of pests in agricultural products is of particular importance. In this study, citrus fruit images were taken in three stages: 1) before pest infestation, 2) beginning of fruit infestation, and 3) eight days after the second stage, in natural light conditions (7000–11,000 lux). A total of 1519 images were prepared for all classes. To classify the images, 70% of the images were used for the network training stage, 10% and 20% of the images were used for the validation and testing stages. Four pre-trained CNN models, namely ResNet-50, GoogleNet, VGG-16 and AlexNet as well as the SGDm, RMSProp and Adam optimization algorithms were used to identify and classify healthy fruit and fruit infected with the Mediterranean fly. The results of evaluating the models in the pest outbreak stage showed that the VGG-16 model with the help of SGDm algorithm had the best efficiency with the highest detection accuracy and F1 of 98.33% and 98.36%, respectively. The evaluation of the third stage showed that the AlexNet model with the help of SGDm algorithm had the best result with the highest detection accuracy and F1 of 99.33% and 99.34%, respectively. AlexNet model using SGDm optimization algorithm had the shortest network training time (323 s). The results of this study showed that convolutional neural network method and machine vision system can be effective in controlling and managing pests in orchards and other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芒果完成签到,获得积分0
3秒前
4秒前
杰克李李完成签到,获得积分10
5秒前
pakiorder完成签到,获得积分20
7秒前
无心的雅霜完成签到,获得积分10
7秒前
1122完成签到,获得积分10
8秒前
王磊完成签到,获得积分10
8秒前
顺心醉蝶完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
zhao完成签到 ,获得积分10
9秒前
yuncong323发布了新的文献求助10
9秒前
gfasdjsjdsjd发布了新的文献求助30
11秒前
pan完成签到,获得积分10
11秒前
12秒前
13秒前
魔幻的妖丽完成签到 ,获得积分10
15秒前
王小凡完成签到 ,获得积分10
15秒前
16秒前
开心薯片发布了新的文献求助10
17秒前
ZXW完成签到,获得积分10
18秒前
莉莉发布了新的文献求助10
18秒前
眼睛大的擎苍完成签到,获得积分10
20秒前
xr完成签到,获得积分10
21秒前
ZORO完成签到,获得积分10
21秒前
22秒前
临时演员完成签到,获得积分10
23秒前
ABCDE完成签到,获得积分10
23秒前
taotao完成签到,获得积分10
23秒前
ED应助莉莉采纳,获得10
24秒前
ED应助莉莉采纳,获得10
24秒前
扣扣登陆完成签到 ,获得积分10
24秒前
25秒前
白日焰火完成签到 ,获得积分10
25秒前
26秒前
26秒前
没事走两步完成签到,获得积分10
27秒前
狄百招发布了新的文献求助10
28秒前
nilou完成签到,获得积分10
29秒前
心好塞发布了新的文献求助10
30秒前
丘比特应助潇洒日记本采纳,获得10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022