亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique

卷积神经网络 侵染 人工智能 有害生物分析 计算机科学 机器视觉 农业 深度学习 机器学习 模式识别(心理学) 农业工程 园艺 生物 生态学 工程类
作者
Ramazan Hadipour-Rokni,Ezzatollah Askari Asli‐Ardeh,Ahmad Jahanbakhshi,Iman Esmaili paeen-Afrakoti,Sajad Sabzi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106611-106611 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.106611
摘要

Plant pests and diseases play a significant role in reducing the quality of agricultural products. As one of the most important plant pathogens, pests like Mediterranean fruit fly cause significant damage to crops and thus annually farmers face a lot of loss in their products. Therefore, the use of modern and non-destructive methods such as machine vision systems and deep learning for early detection of pests in agricultural products is of particular importance. In this study, citrus fruit images were taken in three stages: 1) before pest infestation, 2) beginning of fruit infestation, and 3) eight days after the second stage, in natural light conditions (7000–11,000 lux). A total of 1519 images were prepared for all classes. To classify the images, 70% of the images were used for the network training stage, 10% and 20% of the images were used for the validation and testing stages. Four pre-trained CNN models, namely ResNet-50, GoogleNet, VGG-16 and AlexNet as well as the SGDm, RMSProp and Adam optimization algorithms were used to identify and classify healthy fruit and fruit infected with the Mediterranean fly. The results of evaluating the models in the pest outbreak stage showed that the VGG-16 model with the help of SGDm algorithm had the best efficiency with the highest detection accuracy and F1 of 98.33% and 98.36%, respectively. The evaluation of the third stage showed that the AlexNet model with the help of SGDm algorithm had the best result with the highest detection accuracy and F1 of 99.33% and 99.34%, respectively. AlexNet model using SGDm optimization algorithm had the shortest network training time (323 s). The results of this study showed that convolutional neural network method and machine vision system can be effective in controlling and managing pests in orchards and other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
淡定的半梦完成签到 ,获得积分10
2秒前
dudupig发布了新的文献求助20
3秒前
5秒前
wlei发布了新的文献求助10
7秒前
acetdw完成签到,获得积分10
8秒前
8秒前
9秒前
lf发布了新的文献求助10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
王伟应助科研通管家采纳,获得10
14秒前
16秒前
冷傲新柔发布了新的文献求助10
17秒前
坚定灯泡完成签到,获得积分20
20秒前
Jamie2完成签到,获得积分10
20秒前
Kunning完成签到 ,获得积分10
28秒前
30秒前
lyh完成签到,获得积分10
31秒前
研友_Zzy1pn发布了新的文献求助10
35秒前
37秒前
Jamie完成签到,获得积分10
42秒前
从容成危发布了新的文献求助10
43秒前
43秒前
FashionBoy应助整齐海秋采纳,获得10
46秒前
Lee发布了新的文献求助10
48秒前
科研通AI2S应助从容成危采纳,获得10
53秒前
研友_VZG7GZ应助生动的如花采纳,获得10
56秒前
量子星尘发布了新的文献求助10
57秒前
57秒前
整齐海秋发布了新的文献求助10
1分钟前
深情安青应助momochichu采纳,获得10
1分钟前
chrispaul发布了新的文献求助50
1分钟前
慈祥的冰淇淋完成签到,获得积分10
1分钟前
dormraider完成签到,获得积分10
1分钟前
1分钟前
哒哒哒张海艳完成签到,获得积分10
1分钟前
momochichu发布了新的文献求助10
1分钟前
zsk1122完成签到,获得积分10
1分钟前
凌七留下了新的社区评论
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204482
捐赠科研通 3257320
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613