清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique

卷积神经网络 侵染 人工智能 有害生物分析 计算机科学 机器视觉 农业 深度学习 机器学习 模式识别(心理学) 农业工程 园艺 生物 生态学 工程类
作者
Ramazan Hadipour-Rokni,Ezzatollah Askari Asli‐Ardeh,Ahmad Jahanbakhshi,Iman Esmaili paeen-Afrakoti,Sajad Sabzi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106611-106611 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.106611
摘要

Plant pests and diseases play a significant role in reducing the quality of agricultural products. As one of the most important plant pathogens, pests like Mediterranean fruit fly cause significant damage to crops and thus annually farmers face a lot of loss in their products. Therefore, the use of modern and non-destructive methods such as machine vision systems and deep learning for early detection of pests in agricultural products is of particular importance. In this study, citrus fruit images were taken in three stages: 1) before pest infestation, 2) beginning of fruit infestation, and 3) eight days after the second stage, in natural light conditions (7000–11,000 lux). A total of 1519 images were prepared for all classes. To classify the images, 70% of the images were used for the network training stage, 10% and 20% of the images were used for the validation and testing stages. Four pre-trained CNN models, namely ResNet-50, GoogleNet, VGG-16 and AlexNet as well as the SGDm, RMSProp and Adam optimization algorithms were used to identify and classify healthy fruit and fruit infected with the Mediterranean fly. The results of evaluating the models in the pest outbreak stage showed that the VGG-16 model with the help of SGDm algorithm had the best efficiency with the highest detection accuracy and F1 of 98.33% and 98.36%, respectively. The evaluation of the third stage showed that the AlexNet model with the help of SGDm algorithm had the best result with the highest detection accuracy and F1 of 99.33% and 99.34%, respectively. AlexNet model using SGDm optimization algorithm had the shortest network training time (323 s). The results of this study showed that convolutional neural network method and machine vision system can be effective in controlling and managing pests in orchards and other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
史琛发布了新的文献求助10
11秒前
乒坛巨人完成签到 ,获得积分10
18秒前
31秒前
Dr.Tang完成签到 ,获得积分10
1分钟前
1分钟前
Siren发布了新的文献求助30
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
1分钟前
sci完成签到 ,获得积分10
1分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
yindi1991完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助Siren采纳,获得10
2分钟前
2分钟前
Siren发布了新的文献求助10
2分钟前
ding应助瑁柏采纳,获得10
2分钟前
瑁柏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
瑁柏发布了新的文献求助10
2分钟前
Siren发布了新的文献求助10
3分钟前
3分钟前
Ggap1发布了新的文献求助10
3分钟前
Ggap1完成签到,获得积分10
3分钟前
思源应助Siren采纳,获得10
4分钟前
Raul完成签到 ,获得积分10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Siren发布了新的文献求助10
4分钟前
Xu完成签到,获得积分20
4分钟前
荣浩宇完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助和谐乌龟采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513331
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794417
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664