Intelligent detection of citrus fruit pests using machine vision system and convolutional neural network through transfer learning technique

卷积神经网络 侵染 人工智能 有害生物分析 计算机科学 机器视觉 农业 深度学习 机器学习 模式识别(心理学) 农业工程 园艺 生物 生态学 工程类
作者
Ramazan Hadipour-Rokni,Ezzatollah Askari Asli‐Ardeh,Ahmad Jahanbakhshi,Iman Esmaili paeen-Afrakoti,Sajad Sabzi
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106611-106611 被引量:21
标识
DOI:10.1016/j.compbiomed.2023.106611
摘要

Plant pests and diseases play a significant role in reducing the quality of agricultural products. As one of the most important plant pathogens, pests like Mediterranean fruit fly cause significant damage to crops and thus annually farmers face a lot of loss in their products. Therefore, the use of modern and non-destructive methods such as machine vision systems and deep learning for early detection of pests in agricultural products is of particular importance. In this study, citrus fruit images were taken in three stages: 1) before pest infestation, 2) beginning of fruit infestation, and 3) eight days after the second stage, in natural light conditions (7000–11,000 lux). A total of 1519 images were prepared for all classes. To classify the images, 70% of the images were used for the network training stage, 10% and 20% of the images were used for the validation and testing stages. Four pre-trained CNN models, namely ResNet-50, GoogleNet, VGG-16 and AlexNet as well as the SGDm, RMSProp and Adam optimization algorithms were used to identify and classify healthy fruit and fruit infected with the Mediterranean fly. The results of evaluating the models in the pest outbreak stage showed that the VGG-16 model with the help of SGDm algorithm had the best efficiency with the highest detection accuracy and F1 of 98.33% and 98.36%, respectively. The evaluation of the third stage showed that the AlexNet model with the help of SGDm algorithm had the best result with the highest detection accuracy and F1 of 99.33% and 99.34%, respectively. AlexNet model using SGDm optimization algorithm had the shortest network training time (323 s). The results of this study showed that convolutional neural network method and machine vision system can be effective in controlling and managing pests in orchards and other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
动听元彤发布了新的文献求助10
1秒前
小葛完成签到,获得积分10
2秒前
2秒前
左丘忻完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
2秒前
英勇灵安完成签到,获得积分10
2秒前
大气早晨发布了新的文献求助10
3秒前
3秒前
3秒前
ai zs发布了新的文献求助10
4秒前
4秒前
斯文败类应助ken采纳,获得10
4秒前
祥梦伊飞应助oioioioioi采纳,获得10
5秒前
小竹笋完成签到 ,获得积分10
5秒前
5秒前
咖妃发布了新的文献求助10
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
xiaoGuo应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
YuuLoon应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得30
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
忆夕发布了新的文献求助10
8秒前
lwhxbb完成签到,获得积分10
9秒前
9秒前
maozhijiubai完成签到,获得积分10
9秒前
瓦尔迪完成签到,获得积分10
9秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012