已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing

山崩 岩性 地质学 随机森林 地貌学 地图学 地理 计算机科学 机器学习 古生物学
作者
Wengang Zhang,Yuwei He,Luqi Wang,Songlin Liu,Xuanyu Meng
出处
期刊:Geological Journal [Wiley]
卷期号:58 (6): 2372-2387 被引量:56
标识
DOI:10.1002/gj.4683
摘要

Landslide susceptibility analysis can provide theoretical support for landslide risk management. However, some susceptibility analyses are not sufficiently interpretable. Moreover, the accuracy of many research methods needs to be improved. Therefore, this study can supplement these deficiencies. This study aims to research the evaluation effects of random forest (RF) and extreme gradient boosting (XGBoost) classifier models on landslide susceptibility, and to compare their applicability in Fengjie County, Chongqing, a typical landslide‐prone area in southwest of China. Firstly, 1624 landslides information from 1980 to 2020 were obtained through field investigation, and a geospatial database of 16 conditional factors had been constructed. Secondly, non‐landslide points were selected to form a complete data set and RF and XGBoost models were established. Finally, the area under the ROC curve (AUC) value, accuracy, and F ‐score were used to compare the two models. The results show that even though both classifiers have a highly accurate evaluation of landslide susceptibility, the RF model performs better. In comparison, the RF model has a higher AUC value of 0.866, and its accuracy and F ‐score are approximately 2% higher than XGBoost. The land use, elevation, and lithology of Fengjie County contribute to the occurrence of landslides. This is due to human engineering activities (such as land reclamation, and housing construction) resulting in low slope stability and landslides in widely distributed sandstone, siltstone, and mudstone layers owing to their low permeability and planes of weakness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的元蝶完成签到 ,获得积分10
刚刚
大个应助三九春杪采纳,获得10
1秒前
3秒前
留胡子的元蝶关注了科研通微信公众号
4秒前
传奇3应助smjjs采纳,获得10
6秒前
balala完成签到 ,获得积分10
9秒前
LAN完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助等待泥猴桃采纳,获得10
11秒前
优雅醉山发布了新的文献求助10
13秒前
ZZ发布了新的文献求助100
15秒前
自由冰凡完成签到 ,获得积分10
15秒前
16秒前
桐桐应助xiaohongmao采纳,获得10
17秒前
轻松雨旋完成签到 ,获得积分10
18秒前
风趣安雁完成签到,获得积分10
20秒前
老才完成签到 ,获得积分10
22秒前
烟花应助SlimJoker采纳,获得10
22秒前
wang完成签到 ,获得积分10
24秒前
24秒前
大模型应助kidneybean采纳,获得30
26秒前
30秒前
xiaohongmao发布了新的文献求助10
30秒前
万能图书馆应助优雅醉山采纳,获得10
33秒前
缥缈的灵凡完成签到 ,获得积分10
34秒前
35秒前
xiaohongmao完成签到,获得积分10
36秒前
36秒前
bean完成签到 ,获得积分10
37秒前
思嗡完成签到 ,获得积分10
38秒前
温馨家园完成签到 ,获得积分10
39秒前
三九春杪发布了新的文献求助10
39秒前
kidneybean发布了新的文献求助30
41秒前
vion完成签到 ,获得积分10
43秒前
Yiy完成签到 ,获得积分0
45秒前
Suaia完成签到,获得积分10
48秒前
49秒前
科目三应助明理雨真采纳,获得10
50秒前
传奇3应助njc采纳,获得10
51秒前
51秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150414
求助须知:如何正确求助?哪些是违规求助? 2801747
关于积分的说明 7845691
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727