Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing

山崩 岩性 地质学 随机森林 地貌学 地图学 地理 计算机科学 机器学习 古生物学
作者
Wengang Zhang,Yuwei He,Luqi Wang,Songlin Liu,Xuanyu Meng
出处
期刊:Geological Journal [Wiley]
卷期号:58 (6): 2372-2387 被引量:88
标识
DOI:10.1002/gj.4683
摘要

Landslide susceptibility analysis can provide theoretical support for landslide risk management. However, some susceptibility analyses are not sufficiently interpretable. Moreover, the accuracy of many research methods needs to be improved. Therefore, this study can supplement these deficiencies. This study aims to research the evaluation effects of random forest (RF) and extreme gradient boosting (XGBoost) classifier models on landslide susceptibility, and to compare their applicability in Fengjie County, Chongqing, a typical landslide‐prone area in southwest of China. Firstly, 1624 landslides information from 1980 to 2020 were obtained through field investigation, and a geospatial database of 16 conditional factors had been constructed. Secondly, non‐landslide points were selected to form a complete data set and RF and XGBoost models were established. Finally, the area under the ROC curve (AUC) value, accuracy, and F ‐score were used to compare the two models. The results show that even though both classifiers have a highly accurate evaluation of landslide susceptibility, the RF model performs better. In comparison, the RF model has a higher AUC value of 0.866, and its accuracy and F ‐score are approximately 2% higher than XGBoost. The land use, elevation, and lithology of Fengjie County contribute to the occurrence of landslides. This is due to human engineering activities (such as land reclamation, and housing construction) resulting in low slope stability and landslides in widely distributed sandstone, siltstone, and mudstone layers owing to their low permeability and planes of weakness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助TOF采纳,获得10
刚刚
1秒前
充电宝应助yee采纳,获得10
1秒前
2秒前
3秒前
完美世界应助ChenYX采纳,获得10
4秒前
就是一种水稻的完成签到,获得积分10
4秒前
杨裕农发布了新的文献求助20
5秒前
5秒前
现代的大山完成签到,获得积分10
5秒前
求文献发布了新的文献求助10
5秒前
加菲丰丰举报求助违规成功
6秒前
遇上就这样吧举报求助违规成功
6秒前
地表飞猪举报求助违规成功
6秒前
6秒前
7秒前
7秒前
7秒前
韩jl发布了新的文献求助10
9秒前
岱岱发布了新的文献求助10
9秒前
ttt完成签到,获得积分10
9秒前
9秒前
醉熏的黄豆完成签到 ,获得积分10
9秒前
ding应助dyc采纳,获得10
10秒前
11秒前
nuo_11完成签到,获得积分10
11秒前
11秒前
ttt发布了新的文献求助10
13秒前
萧寒发布了新的文献求助30
13秒前
xjs发布了新的文献求助10
13秒前
Xinxxx应助C5b6789n采纳,获得10
13秒前
14秒前
赘婿应助hxbhszus采纳,获得30
14秒前
15秒前
不一样的光完成签到,获得积分10
15秒前
TOF发布了新的文献求助10
15秒前
张怡完成签到,获得积分20
16秒前
vickie发布了新的文献求助10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445