Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing

山崩 岩性 地质学 随机森林 地貌学 地图学 地理 计算机科学 机器学习 古生物学
作者
Wengang Zhang,Yuwei He,Luqi Wang,Songlin Liu,Xuanyu Meng
出处
期刊:Geological Journal [Wiley]
卷期号:58 (6): 2372-2387 被引量:88
标识
DOI:10.1002/gj.4683
摘要

Landslide susceptibility analysis can provide theoretical support for landslide risk management. However, some susceptibility analyses are not sufficiently interpretable. Moreover, the accuracy of many research methods needs to be improved. Therefore, this study can supplement these deficiencies. This study aims to research the evaluation effects of random forest (RF) and extreme gradient boosting (XGBoost) classifier models on landslide susceptibility, and to compare their applicability in Fengjie County, Chongqing, a typical landslide‐prone area in southwest of China. Firstly, 1624 landslides information from 1980 to 2020 were obtained through field investigation, and a geospatial database of 16 conditional factors had been constructed. Secondly, non‐landslide points were selected to form a complete data set and RF and XGBoost models were established. Finally, the area under the ROC curve (AUC) value, accuracy, and F ‐score were used to compare the two models. The results show that even though both classifiers have a highly accurate evaluation of landslide susceptibility, the RF model performs better. In comparison, the RF model has a higher AUC value of 0.866, and its accuracy and F ‐score are approximately 2% higher than XGBoost. The land use, elevation, and lithology of Fengjie County contribute to the occurrence of landslides. This is due to human engineering activities (such as land reclamation, and housing construction) resulting in low slope stability and landslides in widely distributed sandstone, siltstone, and mudstone layers owing to their low permeability and planes of weakness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研怪人采纳,获得10
刚刚
刚刚
1秒前
2025110031077发布了新的文献求助10
1秒前
美丽的冰枫完成签到,获得积分10
2秒前
爱吃大米完成签到,获得积分10
3秒前
4秒前
自由寻冬发布了新的文献求助10
4秒前
小羊发布了新的文献求助10
5秒前
6秒前
Ffffff发布了新的文献求助10
6秒前
李爱国应助zhihaiyu采纳,获得10
6秒前
淡定碧玉完成签到,获得积分10
6秒前
6秒前
orixero应助葛稀采纳,获得10
8秒前
华仔应助yo一天采纳,获得10
8秒前
小翠11完成签到,获得积分10
9秒前
义气的断秋完成签到,获得积分10
9秒前
NicotineZen发布了新的文献求助10
9秒前
玄枵完成签到,获得积分10
10秒前
10秒前
淡定碧玉发布了新的文献求助10
11秒前
12秒前
12秒前
Grace发布了新的文献求助10
13秒前
13秒前
赵哲完成签到 ,获得积分10
13秒前
14秒前
14秒前
lcj1014完成签到,获得积分20
15秒前
15秒前
moyu123发布了新的文献求助10
16秒前
ding应助潇洒的冰淇淋采纳,获得10
16秒前
蛋卷发布了新的文献求助10
16秒前
禾下乘凉发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
隐形曼青应助01采纳,获得10
19秒前
yzt发布了新的文献求助10
19秒前
淡淡尔烟发布了新的文献求助10
19秒前
yep发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497