Distributed estimation for multi‐agent systems with relative measurements and quantized communication: A feedback quadratic framework

估计员 上下界 二次方程 高斯分布 协方差 计算机科学 控制理论(社会学) 数学优化 克罗内克三角洲 数学 应用数学 人工智能 数学分析 统计 物理 几何学 控制(管理) 量子力学
作者
Qinyuan Liu,Shaoyu Zheng,Zidong Wang,Naif D. Alotaibi,Fawaz E. Alsaadi
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
卷期号:33 (5): 3164-3184 被引量:3
标识
DOI:10.1002/rnc.6564
摘要

Summary In this paper, the feedback quadratic distributed state estimation problem is investigated for a class of linear discrete time‐varying multi‐agent systems subject to non‐Gaussian noises. For the multi‐agent systems, each agent has access to not only the local measurements but the relative states to its adjacent agents as well. Due to the bandwidth constraints of the digital communication networks, the signals are quantized and then exchanged between two adjacent agents, where the probabilistic uniform quantizations are taken into account. The purpose of the addressed problem is to design a novel quadratic distributed estimator for each agent based on the local information and the predictions received from the neighbors. In particular, an output injection term is introduced to handle the unstable systems. By means of the state/measurement augmentation approach, the underlying system is transformed into an augmented one, which aggregates the original vector and its second‐order Kronecker power. Accordingly, a distributed estimator is constructed such that an upper bound is ensured for the estimation error covariance and the suboptimal estimator parameters, which minimize such an upper bound, are subsequently calculated in terms of the solutions to certain matrix difference equations. Finally, an illustrative example is provided to verify the effectiveness and superiority of the proposed quadratic estimation scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助CC采纳,获得10
1秒前
白白完成签到,获得积分10
1秒前
1秒前
1秒前
苏苏完成签到,获得积分10
2秒前
2秒前
wu完成签到,获得积分10
2秒前
2秒前
3秒前
MADKAI发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助111采纳,获得10
4秒前
Accept应助wintercyan采纳,获得20
4秒前
哲999完成签到,获得积分10
4秒前
Mian完成签到,获得积分10
4秒前
5秒前
5秒前
于嗣濠完成签到 ,获得积分10
5秒前
36456657应助CC采纳,获得10
5秒前
优雅山柏发布了新的文献求助10
6秒前
Jacky完成签到,获得积分10
6秒前
脑洞疼应助无情的白桃采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
7秒前
7秒前
zoko发布了新的文献求助10
7秒前
7秒前
曾经的臻发布了新的文献求助10
7秒前
华仔应助S1mple_gentleman采纳,获得10
7秒前
科研通AI5应助CC采纳,获得10
7秒前
7秒前
8秒前
8秒前
张静静完成签到,获得积分10
9秒前
9秒前
震666发布了新的文献求助30
9秒前
MADKAI发布了新的文献求助10
9秒前
9秒前
117发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740