Surgical planning of arteriovenous fistulae in routine clinical practice: A machine learning predictive tool

动静脉瘘 计算机科学 临床实习 医学物理学 医学 放射科 护理部
作者
Martina Doneda,Sofia Poloni,Michela Bozzetto,Andrea Remuzzi,Ettore Lanzarone
出处
期刊:Journal of Vascular Access [SAGE]
卷期号:25 (4): 1170-1179 被引量:7
标识
DOI:10.1177/11297298221147968
摘要

Background: Arteriovenous fistula (AVF) is the preferred vascular access (VA) for hemodialysis, but it is associated with high non-maturation and failure rates. Predicting patient-specific AVF maturation and postoperative changes in blood flow volumes (BFVs) and vessel diameters is of fundamental importance to support the choice of optimal AVF location and improve VA survival. The goal of this study was to employ machine learning (ML) in order to give physicians a fast and easy-to-use tool that provides accurate patient-specific predictions, useful to make AVF surgical planning decisions. Methods: We applied a set of ML approaches on a dataset of 156 patients. Both parametric and non-parametric ML approaches, taking preoperative data as input, were exploited to predict maturation, postoperative BFVs, and diameters. The best approach associated with lowest cross-validation errors between predictions and real measurements was then chosen to provide estimates and quantify prediction errors. Results: The k-NN was the best approach to predict brachial BFV, AVF maturation, and other VA variables, and it was also associated with the least computational effort. With this approach, the confusion matrices proved the high accuracy of the prediction for AVF maturation (96.8%) and the low absolute error distribution for the continuous BFV and diameter variables. Conclusions: Our data-based approach provided accurate patient-specific predictions for different AVF configurations, requiring short computational time as compared to a physical model we previously developed. By supporting VA surgical planning, this fast computing approach could allow AVF surgical planning and help reducing the rate of non-maturation, which might ultimately have a broad impact on the management of hemodialysis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助Qwe采纳,获得10
1秒前
1秒前
fuyu98发布了新的文献求助30
3秒前
Evander发布了新的文献求助10
3秒前
lemon发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ccm应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
yzm发布了新的文献求助10
6秒前
6秒前
心心应助科研通管家采纳,获得10
6秒前
abccd123完成签到,获得积分10
6秒前
今后应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
77完成签到,获得积分10
7秒前
7秒前
8秒前
英姑应助八月宁静采纳,获得10
9秒前
上官若男应助万松辉采纳,获得10
10秒前
77发布了新的文献求助10
12秒前
研友_VZG7GZ应助yzm采纳,获得10
12秒前
可爱的函函应助应急食品采纳,获得10
13秒前
14秒前
汐颜紫雨完成签到,获得积分10
15秒前
16秒前
16秒前
fuyu98完成签到,获得积分10
17秒前
17秒前
mashibeo发布了新的文献求助30
19秒前
赵俊博发布了新的文献求助10
19秒前
盐焗小星球完成签到 ,获得积分10
19秒前
昏睡的朝雪完成签到,获得积分20
19秒前
GGMJ发布了新的文献求助10
20秒前
Aikesi完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073