Surgical planning of arteriovenous fistulae in routine clinical practice: A machine learning predictive tool

动静脉瘘 计算机科学 临床实习 医学物理学 医学 放射科 护理部
作者
Martina Doneda,Sofia Poloni,Michela Bozzetto,Andrea Remuzzi,Ettore Lanzarone
出处
期刊:Journal of Vascular Access [SAGE]
卷期号:25 (4): 1170-1179 被引量:7
标识
DOI:10.1177/11297298221147968
摘要

Background: Arteriovenous fistula (AVF) is the preferred vascular access (VA) for hemodialysis, but it is associated with high non-maturation and failure rates. Predicting patient-specific AVF maturation and postoperative changes in blood flow volumes (BFVs) and vessel diameters is of fundamental importance to support the choice of optimal AVF location and improve VA survival. The goal of this study was to employ machine learning (ML) in order to give physicians a fast and easy-to-use tool that provides accurate patient-specific predictions, useful to make AVF surgical planning decisions. Methods: We applied a set of ML approaches on a dataset of 156 patients. Both parametric and non-parametric ML approaches, taking preoperative data as input, were exploited to predict maturation, postoperative BFVs, and diameters. The best approach associated with lowest cross-validation errors between predictions and real measurements was then chosen to provide estimates and quantify prediction errors. Results: The k-NN was the best approach to predict brachial BFV, AVF maturation, and other VA variables, and it was also associated with the least computational effort. With this approach, the confusion matrices proved the high accuracy of the prediction for AVF maturation (96.8%) and the low absolute error distribution for the continuous BFV and diameter variables. Conclusions: Our data-based approach provided accurate patient-specific predictions for different AVF configurations, requiring short computational time as compared to a physical model we previously developed. By supporting VA surgical planning, this fast computing approach could allow AVF surgical planning and help reducing the rate of non-maturation, which might ultimately have a broad impact on the management of hemodialysis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
mini完成签到,获得积分10
刚刚
大模型应助mofeik采纳,获得10
1秒前
超级梦寒发布了新的文献求助10
2秒前
2秒前
Tobiuo完成签到,获得积分10
2秒前
元谷雪发布了新的文献求助10
2秒前
砺行应助RA000采纳,获得10
2秒前
王sy完成签到 ,获得积分10
3秒前
深蓝完成签到,获得积分10
4秒前
4秒前
阳光不二完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
guo发布了新的文献求助10
8秒前
爱科研168完成签到,获得积分10
8秒前
现代尔芙完成签到 ,获得积分10
8秒前
沐雪完成签到,获得积分10
8秒前
8秒前
考博圣体发布了新的文献求助10
8秒前
李健的粉丝团团长应助tgg采纳,获得10
9秒前
9秒前
搜集达人应助人机采纳,获得10
10秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
sss发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
lzz完成签到,获得积分10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
Return应助科研通管家采纳,获得10
11秒前
求助人员应助南风采纳,获得30
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360