Development of a 13-item Short Form for Fugl-Meyer Assessment of Upper Extremity Scale Using a Machine Learning Approach

同时有效性 冲程(发动机) 康复 物理疗法 物理医学与康复 医学 心理学 心理测量学 临床心理学 内部一致性 机械工程 工程类
作者
Gong‐Hong Lin,Inga Wang,Shih‐Chieh Lee,Chien‐Yu Huang,Yi‐Ching Wang,Ching‐Lin Hsieh
出处
期刊:Archives of Physical Medicine and Rehabilitation [Elsevier]
卷期号:104 (8): 1219-1226 被引量:3
标识
DOI:10.1016/j.apmr.2023.01.005
摘要

To develop and validate a short form of the Fugl-Meyer Assessment of Upper Extremity Scale (FMA-UE) using a machine learning approach (FMA-UE-ML). In addition, scores of items not included in the FMA-UE-ML were predicted.Secondary data from a previous study, which assessed individuals post-stroke using the FMA-UE at 4 time points: 5-30 days post-stroke screen, 2-month post-stroke baseline assessment, 6-month post-stroke assessment, and 12-month post-stroke assessment.Rehabilitation units in hospitals.A total of 408 individuals post-stroke (N=408).Not applicable.The 30-item FMA-UE.We established 29 candidate versions of the FMA-UE-ML with different numbers of items, from 1 to 29, and examined their concurrent validity and responsiveness. We found that the responsiveness of the candidate versions obviously declined when the number of items was less than 13. Thus, the 13-item version was selected as the FMA-UE-ML. The concurrent validity was good (intra-class correlation coefficients ≥0.99). The standardized response means of the FMA-UE-ML and FMA-UE were 0.54-0.88 and 0.52-0.91, respectively. The Pearson's rs between the change scores of the FMA-UE-ML and those of the FMA-UE were 0.96-0.98. The predicted item scores had acceptable to good accuracy (Kappa=0.50-0.92).The FMA-UE-ML seems a promising short form to improve administrative efficiency while retaining good concurrent validity and responsiveness. In addition, the FAM-UE-ML can provide all item scores of the FMA-UE for users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俭朴涫发布了新的文献求助10
1秒前
浮游应助yayabing采纳,获得10
1秒前
1秒前
刘慧敏完成签到,获得积分10
2秒前
3秒前
SciGPT应助蔚蓝天空采纳,获得10
3秒前
filili发布了新的文献求助10
3秒前
CT完成签到,获得积分20
3秒前
一一发布了新的文献求助10
4秒前
依依发布了新的文献求助10
4秒前
JamesPei应助liuqc采纳,获得10
5秒前
悠悠应助hahahahahe采纳,获得10
5秒前
6秒前
6秒前
7秒前
森林木发布了新的文献求助10
8秒前
KYRIE完成签到,获得积分20
8秒前
9秒前
成就的鲂发布了新的文献求助10
9秒前
10秒前
深情安青应助丁论文采纳,获得10
11秒前
关正卿完成签到,获得积分10
11秒前
程风破浪发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
ym发布了新的文献求助10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
小哦嘿应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
小哦嘿应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176