同时有效性
冲程(发动机)
康复
物理疗法
物理医学与康复
医学
心理学
心理测量学
临床心理学
内部一致性
机械工程
工程类
作者
Gong‐Hong Lin,Inga Wang,Shih‐Chieh Lee,Chien‐Yu Huang,Yi‐Ching Wang,Ching‐Lin Hsieh
标识
DOI:10.1016/j.apmr.2023.01.005
摘要
To develop and validate a short form of the Fugl-Meyer Assessment of Upper Extremity Scale (FMA-UE) using a machine learning approach (FMA-UE-ML). In addition, scores of items not included in the FMA-UE-ML were predicted.Secondary data from a previous study, which assessed individuals post-stroke using the FMA-UE at 4 time points: 5-30 days post-stroke screen, 2-month post-stroke baseline assessment, 6-month post-stroke assessment, and 12-month post-stroke assessment.Rehabilitation units in hospitals.A total of 408 individuals post-stroke (N=408).Not applicable.The 30-item FMA-UE.We established 29 candidate versions of the FMA-UE-ML with different numbers of items, from 1 to 29, and examined their concurrent validity and responsiveness. We found that the responsiveness of the candidate versions obviously declined when the number of items was less than 13. Thus, the 13-item version was selected as the FMA-UE-ML. The concurrent validity was good (intra-class correlation coefficients ≥0.99). The standardized response means of the FMA-UE-ML and FMA-UE were 0.54-0.88 and 0.52-0.91, respectively. The Pearson's rs between the change scores of the FMA-UE-ML and those of the FMA-UE were 0.96-0.98. The predicted item scores had acceptable to good accuracy (Kappa=0.50-0.92).The FMA-UE-ML seems a promising short form to improve administrative efficiency while retaining good concurrent validity and responsiveness. In addition, the FAM-UE-ML can provide all item scores of the FMA-UE for users.
科研通智能强力驱动
Strongly Powered by AbleSci AI