Surveying coconut trees using high-resolution satellite imagery in remote atolls of the Pacific Ocean

遥感 椰子 棕榈 卫星图像 树(集合论) 比例(比率) 计算机科学 特征(语言学) 植被(病理学) 环礁 环境科学 像素 人工智能 地理 地图学 生态学 数学 生物 园艺 病理 哲学 数学分析 量子力学 物理 语言学 医学 暗礁
作者
Juepeng Zheng,Shuai Yuan,Wencheng Wu,Weijia Li,Le Yu,Haohuan Fu,David A. Coomes
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:287: 113485-113485 被引量:16
标识
DOI:10.1016/j.rse.2023.113485
摘要

Coconut (Cocos nucifera L.) is one of the world's most economically important tree species, and coconut palm plantations dominate many islands and tropical coastlines. However, the expansion of plantations to supply international markets threatens biodiversity. Therefore, monitoring the plantations is important not only for the food industry but also for evaluating and mitigating environmental impacts of the industry. However, the detection of coconut trees from space is challenging because the palms' crowns hold only limited pixels of high-resolution optical imagery. Here, we present an accurate and real-time COCOnut tree DETection method (COCODET) which uses satellite imagery to detect individual palms, comprising three components. First, an Adaptive Feature Enhancement (AFE) module is designed to improve both the capacity of representation at the highest level of the feature map and feature representation ability and help distinguish between coconut trees and other vegetation. Secondly, we modify a region proposal network to produce a Tree-shape Region Proposal Network (T-RPN) for producing coconut tree candidates. Finally, we create a Cross Scale Fusion (CSF) module for integrating multi-scale information to improve small tree detection; this fuses features of coconut crowns from different levels, connecting shallow and deep-level semantic features. We applied COCODET to detect coconut trees in four remote atolls from the Acteon Group in French Polynesia. The natural habitats on the islands were previously cleared for coconut plantations, many of which have since been abandoned. COCODET achieved an average F1 score of 86.5% using its real-time inference process, considerably outperforming other cutting-edge object detection algorithms (4.3 ∼ 12.0% more accurate). We detected 688 ha of coconuts and 182 ha of natural habitat on the islands, and within the coconut groves we detected 120,237 individuals. Our analyses indicate that deep learning approaches can be successfully applied to coconut palm detection, aiding efforts to understand human impacts on natural ecosystems and biodiversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Robertchen完成签到,获得积分10
1秒前
锦诗完成签到,获得积分10
2秒前
CodeCraft应助libaibai采纳,获得10
5秒前
6秒前
kuku完成签到,获得积分10
11秒前
12秒前
wuwa完成签到,获得积分10
12秒前
Xuekai完成签到,获得积分10
13秒前
Orange应助你好明天采纳,获得10
14秒前
清秀的小狗完成签到 ,获得积分10
14秒前
zorro3574发布了新的文献求助10
15秒前
刘恒博完成签到,获得积分10
15秒前
16秒前
科目三应助jinyy采纳,获得10
16秒前
16秒前
困敦发布了新的文献求助10
18秒前
18秒前
DLDL发布了新的文献求助10
18秒前
由天与完成签到,获得积分20
18秒前
高贵的路人完成签到,获得积分10
19秒前
王治豪发布了新的文献求助10
19秒前
libaibai发布了新的文献求助10
21秒前
木偶发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
25秒前
碧蓝皮卡丘完成签到,获得积分10
26秒前
北夏完成签到 ,获得积分10
26秒前
你好明天发布了新的文献求助10
26秒前
刘恒博发布了新的文献求助10
27秒前
梅残风暖发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
31秒前
快递乱跑完成签到 ,获得积分10
32秒前
36秒前
37秒前
甜蜜灵波完成签到,获得积分10
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237