合理设计
蛋白质设计
蛋白质工程
计算机科学
生化工程
工程设计过程
突变
定向进化
功能(生物学)
理论(学习稳定性)
酶
计算生物学
蛋白质结构
化学
生物
工程类
突变体
纳米技术
生物化学
机器学习
材料科学
基因
机械工程
进化生物学
作者
Zhongdi Song,Qunfeng Zhang,Wenhui Wu,Pu Zhang,Haoran Yu
标识
DOI:10.3389/fbioe.2023.1129149
摘要
The strategy of rational design to engineer enzymes is to predict the potential mutants based on the understanding of the relationships between protein structure and function, and subsequently introduce the mutations using the site-directed mutagenesis. Rational design methods are universal, relatively fast and have the potential to be developed into algorithms that can quantitatively predict the performance of the designed sequences. Compared to the protein stability, it was more challenging to design an enzyme with improved activity or selectivity, due to the complexity of enzyme molecular structure and inadequate understanding of the relationships between enzyme structures and functions. However, with the development of computational force, advanced algorithm and a deeper understanding of enzyme catalytic mechanisms, rational design could significantly simplify the process of engineering enzyme functions and the number of studies applying rational design strategy has been increasing. Here, we reviewed the recent advances of applying the rational design strategy to engineer enzyme functions including activity and enantioselectivity. Five strategies including multiple sequence alignment, strategy based on steric hindrance, strategy based on remodeling interaction network, strategy based on dynamics modification and computational protein design are discussed and the successful cases using these strategies are introduced.
科研通智能强力驱动
Strongly Powered by AbleSci AI