Open-source, fully-automated hybrid cardiac substructure segmentation: development and optimisation

分割 伟大的船只 Sørensen–骰子系数 人工智能 医学 豪斯多夫距离 下部结构 放射科 心脏成像 核医学 计算机科学 图像分割 模式识别(心理学) 心脏病学 结构工程 工程类
作者
R. Finnegan,Vicky Chin,Phillip Chlap,Ali Haidar,James Otton,Jason Dowling,David I Thwaites,Shalini K Vinod,Geoff P Delaney,Lois Holloway
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:46 (1): 377-393 被引量:1
标识
DOI:10.1007/s13246-023-01231-w
摘要

Abstract Radiotherapy for thoracic and breast tumours is associated with a range of cardiotoxicities. Emerging evidence suggests cardiac substructure doses may be more predictive of specific outcomes, however, quantitative data necessary to develop clinical planning constraints is lacking. Retrospective analysis of patient data is required, which relies on accurate segmentation of cardiac substructures. In this study, a novel model was designed to deliver reliable, accurate, and anatomically consistent segmentation of 18 cardiac substructures on computed tomography (CT) scans. Thirty manually contoured CT scans were included. The proposed multi-stage method leverages deep learning (DL), multi-atlas mapping, and geometric modelling to automatically segment the whole heart, cardiac chambers, great vessels, heart valves, coronary arteries, and conduction nodes. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD), and volume ratio. Performance was reliable, with no errors observed and acceptable variation in accuracy between cases, including in challenging cases with imaging artefacts and atypical patient anatomy. The median DSC range was 0.81–0.93 for whole heart and cardiac chambers, 0.43–0.76 for great vessels and conduction nodes, and 0.22–0.53 for heart valves. For all structures the median MDA was below 6 mm, median HD ranged 7.7–19.7 mm, and median volume ratio was close to one (0.95–1.49) for all structures except the left main coronary artery (2.07). The fully automatic algorithm takes between 9 and 23 min per case. The proposed fully-automatic method accurately delineates cardiac substructures on radiotherapy planning CT scans. Robust and anatomically consistent segmentations, particularly for smaller structures, represents a major advantage of the proposed segmentation approach. The open-source software will facilitate more precise evaluation of cardiac doses and risks from available clinical datasets. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
书芹完成签到,获得积分10
1秒前
Amanda完成签到,获得积分10
1秒前
wanci应助swing采纳,获得10
1秒前
啊啊啊完成签到,获得积分10
2秒前
jhcraul完成签到,获得积分0
2秒前
2秒前
迷你小五完成签到,获得积分10
4秒前
9202211125完成签到,获得积分10
5秒前
W1ll完成签到,获得积分10
6秒前
文静的谷菱完成签到,获得积分10
6秒前
微笑的若魔完成签到 ,获得积分10
6秒前
王易云完成签到,获得积分10
7秒前
7秒前
my196755完成签到,获得积分10
7秒前
jiao发布了新的文献求助30
7秒前
ki完成签到 ,获得积分10
7秒前
万能图书馆应助CR采纳,获得10
8秒前
852应助杨枝甘露加雪糕采纳,获得10
8秒前
illiterate完成签到,获得积分10
8秒前
TEDDY完成签到,获得积分10
8秒前
9秒前
10秒前
温暖的涵易应助美满平灵采纳,获得30
10秒前
CodeCraft应助李双艳采纳,获得10
11秒前
11秒前
wxy完成签到,获得积分10
11秒前
落月铭完成签到,获得积分10
12秒前
Hello应助peikyang采纳,获得10
12秒前
danan发布了新的文献求助10
12秒前
energyharvester完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
丫头完成签到 ,获得积分10
13秒前
小五完成签到,获得积分10
13秒前
常常完成签到 ,获得积分10
13秒前
Rondab应助z不停采纳,获得10
14秒前
msy完成签到,获得积分10
15秒前
勤劳绿毛龟完成签到,获得积分10
15秒前
16秒前
gc发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478