Open-source, fully-automated hybrid cardiac substructure segmentation: development and optimisation

分割 伟大的船只 Sørensen–骰子系数 人工智能 医学 豪斯多夫距离 下部结构 放射科 心脏成像 核医学 计算机科学 图像分割 模式识别(心理学) 心脏病学 结构工程 工程类
作者
R. Finnegan,Vicky Chin,Phillip Chlap,Ali Haidar,James Otton,Jason Dowling,David I Thwaites,Shalini K Vinod,Geoff P Delaney,Lois Holloway
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:46 (1): 377-393 被引量:1
标识
DOI:10.1007/s13246-023-01231-w
摘要

Abstract Radiotherapy for thoracic and breast tumours is associated with a range of cardiotoxicities. Emerging evidence suggests cardiac substructure doses may be more predictive of specific outcomes, however, quantitative data necessary to develop clinical planning constraints is lacking. Retrospective analysis of patient data is required, which relies on accurate segmentation of cardiac substructures. In this study, a novel model was designed to deliver reliable, accurate, and anatomically consistent segmentation of 18 cardiac substructures on computed tomography (CT) scans. Thirty manually contoured CT scans were included. The proposed multi-stage method leverages deep learning (DL), multi-atlas mapping, and geometric modelling to automatically segment the whole heart, cardiac chambers, great vessels, heart valves, coronary arteries, and conduction nodes. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD), and volume ratio. Performance was reliable, with no errors observed and acceptable variation in accuracy between cases, including in challenging cases with imaging artefacts and atypical patient anatomy. The median DSC range was 0.81–0.93 for whole heart and cardiac chambers, 0.43–0.76 for great vessels and conduction nodes, and 0.22–0.53 for heart valves. For all structures the median MDA was below 6 mm, median HD ranged 7.7–19.7 mm, and median volume ratio was close to one (0.95–1.49) for all structures except the left main coronary artery (2.07). The fully automatic algorithm takes between 9 and 23 min per case. The proposed fully-automatic method accurately delineates cardiac substructures on radiotherapy planning CT scans. Robust and anatomically consistent segmentations, particularly for smaller structures, represents a major advantage of the proposed segmentation approach. The open-source software will facilitate more precise evaluation of cardiac doses and risks from available clinical datasets. Graphical abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白果发布了新的文献求助10
刚刚
刚刚
刚刚
自由元冬发布了新的文献求助10
刚刚
王井彦发布了新的文献求助10
1秒前
jias发布了新的文献求助10
1秒前
欢喜的亦竹完成签到,获得积分10
1秒前
大方惜天完成签到,获得积分10
1秒前
2秒前
lzp完成签到 ,获得积分10
2秒前
3秒前
3秒前
exp发布了新的文献求助30
3秒前
哒哒发布了新的文献求助10
3秒前
今后应助LSF采纳,获得10
3秒前
Orange应助xixi采纳,获得10
4秒前
4秒前
4秒前
小二郎应助LG采纳,获得10
4秒前
李爱国应助高高越泽采纳,获得10
4秒前
xzs完成签到,获得积分20
4秒前
j7完成签到 ,获得积分10
5秒前
5秒前
5秒前
拆拆拆完成签到 ,获得积分10
6秒前
sleepy应助科研工作者采纳,获得10
6秒前
李健的小迷弟应助whisper采纳,获得10
6秒前
gege完成签到,获得积分10
6秒前
xzs发布了新的文献求助10
6秒前
我是老大应助iwonder采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
脑洞疼应助府于杰采纳,获得10
7秒前
木子李完成签到,获得积分10
7秒前
Owen应助111采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
小脚丫发布了新的文献求助10
8秒前
Brooks给Brooks的求助进行了留言
8秒前
8秒前
9秒前
李健应助马放南山采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851