计算机科学
分割
人工智能
透视图(图形)
图像分割
模式识别(心理学)
光学(聚焦)
计算机视觉
物理
光学
作者
Rongtao Xu,Changwei Wang,Jiguang Zhang,Shibiao Xu,Weiliang Meng,Xiaopeng Zhang
标识
DOI:10.1109/tip.2023.3238648
摘要
High spatial resolution (HSR) remote sensing images contain complex foreground-background relationships, which makes the remote sensing land cover segmentation a special semantic segmentation task. The main challenges come from the large-scale variation, complex background samples and imbalanced foreground-background distribution. These issues make recent context modeling methods sub-optimal due to the lack of foreground saliency modeling. To handle these problems, we propose a Remote Sensing Segmentation framework (RSSFormer), including Adaptive TransFormer Fusion Module, Detail-aware Attention Layer and Foreground Saliency Guided Loss. Specifically, from the perspective of relation-based foreground saliency modeling, our Adaptive Transformer Fusion Module can adaptively suppress background noise and enhance object saliency when fusing multi-scale features. Then our Detail-aware Attention Layer extracts the detail and foreground-related information via the interplay of spatial attention and channel attention, which further enhances the foreground saliency. From the perspective of optimization-based foreground saliency modeling, our Foreground Saliency Guided Loss can guide the network to focus on hard samples with low foreground saliency responses to achieve balanced optimization. Experimental results on LoveDA datasets, Vaihingen datasets, Potsdam datasets and iSAID datasets validate that our method outperforms existing general semantic segmentation methods and remote sensing segmentation methods, and achieves a good compromise between computational overhead and accuracy. Our code is available at https://github.com/Rongtao-Xu/RepresentationLearning/tree/main/RSSFormer-TIP2023.
科研通智能强力驱动
Strongly Powered by AbleSci AI