Investigation of thermal control in phase-changing ABO3 perovskites via first-principles predictions: general mechanism of emittance

热发射率 热的 带隙 化学物理 相(物质) 声子 红外线的 材料科学 工作(物理) 相变存储器 凝聚态物理 热力学 化学 光电子学 物理 纳米技术 光学 梁(结构) 有机化学 图层(电子)
作者
Liping Tong,Nianao Xu,Hongchao Li,Lan Yang,Zhongyang Wang,Qixin Guo,Tongxiang Fan
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (10): 7302-7311 被引量:5
标识
DOI:10.1039/d2cp05693c
摘要

Phase-change thermal control has recently seen increased interest due to its significant potential for use in smart windows, building insulation, and optoelectronic devices in spacecraft. Tunable variation in infrared emittance can be achieved by thermally controlling the phase transitions of materials at different temperatures. A high emittance in the mid-infrared region is usually caused by resonant phonon vibrational modes. However, the fundamental mechanism of emittance variation during the phase-change process remains elusive. In this work, the electronic bandgaps, phononic structures, optical-spectrum properties, and formation energies of 76 kinds of phase-changing ABO3 perovskites were predicted based on first-principles calculations in the mid-infrared region. The variation in emittance between two phases of a single material was found to have an exponential correlation with the bandgap difference (R2 ∼ 0.92). Furthermore, a strong linear correlation (R2 ∼ 0.92) was found between the emittance variation and the formation-energy difference, and the emittance variation was also strongly correlated with the volume-distortion rate (R2 ∼ 0.90). Finally, it was concluded that a large lattice vibrational energy, a high formation energy, and a small cell volume are conducive to high emittance. This work provides a strong dataset for training machine-learning models, and it paves the way for further use of this novel methodology to seek efficient phase-change materials for thermal control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天没烦恼完成签到 ,获得积分10
刚刚
刚刚
1秒前
HEIKU应助aini925采纳,获得10
1秒前
3秒前
隐形曼青应助一站到底采纳,获得10
3秒前
整齐珩发布了新的文献求助10
3秒前
5秒前
望月暑生发布了新的文献求助10
5秒前
大模型应助LJbe2o采纳,获得10
6秒前
acca发布了新的文献求助30
6秒前
8秒前
良辰应助拉丝耶耶采纳,获得10
8秒前
Chillym完成签到 ,获得积分10
9秒前
卡卡发布了新的文献求助10
10秒前
险胜应助科研通管家采纳,获得30
10秒前
Akim应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
QDU应助科研通管家采纳,获得10
10秒前
杳鸢应助科研通管家采纳,获得30
10秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
bkagyin应助gaoyue高月采纳,获得10
11秒前
11秒前
李大仁发布了新的文献求助10
14秒前
14秒前
墨染清风凉完成签到,获得积分20
14秒前
快乐自行车完成签到,获得积分10
14秒前
Catalysis123发布了新的文献求助30
15秒前
orixero应助和谐谷蕊采纳,获得10
15秒前
15秒前
飞飞鱼发布了新的文献求助10
15秒前
17秒前
科研小白完成签到 ,获得积分10
17秒前
peterlee完成签到,获得积分10
19秒前
卡卡完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297