亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting latent lncRNA and cancer metastatic event associations via variational graph auto-encoder

计算机科学 编码 编码器 邻接矩阵 图形 数据挖掘 理论计算机科学 生物 遗传学 基因 操作系统
作者
Yuan Zhu,Feng Zhang,Shihua Zhang,Ming Yi
出处
期刊:Methods [Elsevier BV]
卷期号:211: 1-9 被引量:6
标识
DOI:10.1016/j.ymeth.2023.01.006
摘要

Long non-coding RNA (lncRNA) are shown to be closely associated with cancer metastatic events (CME, e.g., cancer cell invasion, intravasation, extravasation, proliferation) that collaboratively accelerate malignant cancer spread and cause high mortality rate in patients. Clinical trials may accurately uncover the relationships between lncRNAs and CMEs; however, it is time-consuming and expensive. With the accumulation of data, there is an urgent need to find efficient ways to identify these relationships. Herein, a graph embedding representation-based predictor (VGEA-LCME) for exploring latent lncRNA-CME associations is introduced. In VGEA-LCME, a heterogeneous combined network is constructed by integrating similarity and linkage matrix that can maintain internal and external characteristics of networks, and a variational graph auto-encoder serves as a feature generator to represent arbitrary lncRNA and CME pair. The final robustness predicted result is obtained by ensemble classifier strategy via cross-validation. Experimental comparisons and literature verification show better remarkable performance of VGEA-LCME, although the similarities between CMEs are challenging to calculate. In addition, VGEA-LCME can further identify organ-specific CMEs. To the best of our knowledge, this is the first computational attempt to discover the potential relationships between lncRNAs and CMEs. It may provide support and new insight for guiding experimental research of metastatic cancers. The source code and data are available at https://github.com/zhuyuan-cug/VGAE-LCME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
herococa应助科研通管家采纳,获得60
4秒前
herococa应助科研通管家采纳,获得10
4秒前
TXZ06完成签到,获得积分10
11秒前
33秒前
59秒前
1分钟前
zqq完成签到,获得积分0
1分钟前
Frankie发布了新的文献求助10
1分钟前
Frankie完成签到,获得积分10
1分钟前
1分钟前
王磊完成签到 ,获得积分10
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lmplzzp发布了新的文献求助10
1分钟前
chichqq发布了新的文献求助10
1分钟前
似水流年完成签到,获得积分10
1分钟前
滴滴滴完成签到 ,获得积分10
1分钟前
1分钟前
111完成签到,获得积分10
1分钟前
snmdpy发布了新的文献求助10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
Akim应助chichqq采纳,获得10
2分钟前
似水流年发布了新的文献求助10
2分钟前
2分钟前
无辜笑容发布了新的文献求助10
2分钟前
Menand完成签到,获得积分10
2分钟前
无辜笑容完成签到,获得积分10
2分钟前
善学以致用应助无辜笑容采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
远枫orz发布了新的文献求助30
2分钟前
八卦的兔子完成签到,获得积分20
2分钟前
芋曦发布了新的文献求助20
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503050
关于积分的说明 11111175
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870748
科研通“疑难数据库(出版商)”最低求助积分说明 802250