Predicting latent lncRNA and cancer metastatic event associations via variational graph auto-encoder

计算机科学 编码 编码器 邻接矩阵 图形 数据挖掘 理论计算机科学 生物 遗传学 基因 操作系统
作者
Yuan Zhu,Feng Zhang,Shihua Zhang,Ming Yi
出处
期刊:Methods [Elsevier]
卷期号:211: 1-9 被引量:6
标识
DOI:10.1016/j.ymeth.2023.01.006
摘要

Long non-coding RNA (lncRNA) are shown to be closely associated with cancer metastatic events (CME, e.g., cancer cell invasion, intravasation, extravasation, proliferation) that collaboratively accelerate malignant cancer spread and cause high mortality rate in patients. Clinical trials may accurately uncover the relationships between lncRNAs and CMEs; however, it is time-consuming and expensive. With the accumulation of data, there is an urgent need to find efficient ways to identify these relationships. Herein, a graph embedding representation-based predictor (VGEA-LCME) for exploring latent lncRNA-CME associations is introduced. In VGEA-LCME, a heterogeneous combined network is constructed by integrating similarity and linkage matrix that can maintain internal and external characteristics of networks, and a variational graph auto-encoder serves as a feature generator to represent arbitrary lncRNA and CME pair. The final robustness predicted result is obtained by ensemble classifier strategy via cross-validation. Experimental comparisons and literature verification show better remarkable performance of VGEA-LCME, although the similarities between CMEs are challenging to calculate. In addition, VGEA-LCME can further identify organ-specific CMEs. To the best of our knowledge, this is the first computational attempt to discover the potential relationships between lncRNAs and CMEs. It may provide support and new insight for guiding experimental research of metastatic cancers. The source code and data are available at https://github.com/zhuyuan-cug/VGAE-LCME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AH106应助will采纳,获得10
刚刚
司马秋凌完成签到,获得积分10
刚刚
刚刚
Fernweh发布了新的文献求助10
1秒前
852应助Moro采纳,获得10
1秒前
2秒前
laryc发布了新的文献求助10
2秒前
真三完成签到,获得积分10
2秒前
2秒前
2秒前
852应助lycoris采纳,获得10
3秒前
星辰大海应助温婉采纳,获得10
3秒前
4秒前
科目三应助222333采纳,获得10
4秒前
绝望的文盲关注了科研通微信公众号
4秒前
喜欢月亮魔法师完成签到,获得积分10
5秒前
wanci应助如意的雨琴采纳,获得10
5秒前
5秒前
if发布了新的文献求助10
6秒前
柒景景完成签到,获得积分10
6秒前
7秒前
时钟完成签到,获得积分20
7秒前
TEDDY发布了新的文献求助10
7秒前
heye完成签到,获得积分20
7秒前
鱼鱼鱼完成签到,获得积分10
7秒前
憨憨发布了新的文献求助10
7秒前
Mimi发布了新的文献求助10
7秒前
8秒前
核桃发布了新的文献求助10
8秒前
9秒前
9秒前
饲养员发布了新的文献求助10
9秒前
10秒前
10秒前
水水应助天蓝日月潭采纳,获得20
10秒前
今后应助Wangjj采纳,获得30
10秒前
luo完成签到,获得积分10
11秒前
莫咏怡发布了新的文献求助10
12秒前
乐乐应助Corn_Dog采纳,获得10
12秒前
鱼鱼鱼发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728