心理学
统计能力
连接体
神经科学
功能连接
系统神经科学
静息状态功能磁共振成像
功率图分析
样本量测定
局部场电位
领域(数学)
功率(物理)
人类连接体项目
计算神经科学
计算机科学
图形
理论计算机科学
数学
统计
中枢神经系统
物理
量子力学
纯数学
少突胶质细胞
髓鞘
作者
Koen Helwegen,Ilan Libedinsky,Martijn P. van den Heuvel
标识
DOI:10.1016/j.tics.2022.12.011
摘要
Network neuroscience has emerged as a leading method to study brain connectivity. The success of these investigations is dependent not only on approaches to accurately map connectivity but also on the ability to detect real effects in the data – that is, statistical power. We review the state of statistical power in the field and discuss sample size, effect size, measurement error, and network topology as key factors that influence the power of brain connectivity investigations. We use the term 'differential power' to describe how power can vary between nodes, edges, and graph metrics, leaving traces in both positive and negative connectome findings. We conclude with strategies for working with, rather than around, power in connectivity studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI