Vision transformer attention with multi-reservoir echo state network for anomaly recognition

计算机科学 异常检测 人工智能 变压器 模式识别(心理学) 数据挖掘 工程类 电气工程 电压
作者
Waseem Ullah,Tanveer Hussain,Sung Wook Baik
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (3): 103289-103289 被引量:31
标识
DOI:10.1016/j.ipm.2023.103289
摘要

Anomalous event recognition requires an instant response to reduce the loss of human life and property; however, existing automated systems show limited performance due to considerations related to the temporal domain of the videos and ignore the significant role of spatial information. Furthermore, although current surveillance systems can detect anomalous events, they require human intervention to recognise their nature and to select appropriate countermeasures, as there are no fully automatic surveillance techniques that can simultaneously detect and interpret anomalous events. Therefore, we present a framework called Vision Transformer Anomaly Recognition (ViT-ARN) that can detect and interpret anomalies in smart city surveillance videos. The framework consists of two stages: the first involves online anomaly detection, for which a customised, lightweight, one-class deep neural network is developed to detect anomalies in a surveillance environment, while in the second stage, the detected anomaly is further classified into the corresponding class. The size of our anomaly detection model is compressed using a filter pruning strategy based on a geometric median, with the aim of easy adaptability for resource-constrained devices. Anomaly classification is based on vision transformer features and is followed by a bottleneck attention mechanism to enhance the representation. The refined features are passed to a multi-reservoir echo state network for a detailed analysis of real-world anomalies such as vandalism and road accidents. A total of 858 and 1600 videos from two datasets are used to train the proposed model, and extensive experiments on the LAD-2000 and UCF-Crime datasets comprising 290 and 400 testing videos reveal that our framework can recognise anomalies more effectively, outperforming other state-of-the-art approaches with increases in accuracy of 10.14% and 3% on the LAD-2000 and UCF-Crime datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助轻松的万恶采纳,获得10
刚刚
1秒前
www发布了新的文献求助10
1秒前
研友_VZG64n发布了新的文献求助10
2秒前
2秒前
光光完成签到,获得积分10
3秒前
slp123456完成签到,获得积分20
3秒前
4秒前
1234发布了新的文献求助10
4秒前
无花果应助一鸣采纳,获得10
5秒前
5秒前
6秒前
时米米米发布了新的文献求助10
6秒前
大模型应助xinying采纳,获得10
6秒前
7秒前
7秒前
陌生完成签到 ,获得积分10
8秒前
领导范儿应助淡然的夜柳采纳,获得10
8秒前
9秒前
12秒前
JamesPei应助1234645678采纳,获得10
13秒前
13秒前
小二郎应助小盼虫采纳,获得10
13秒前
13秒前
14秒前
ttm发布了新的文献求助30
14秒前
蜡笔完成签到,获得积分10
15秒前
大个应助邹鹏采纳,获得10
15秒前
15秒前
16秒前
机智雪糕发布了新的文献求助20
17秒前
mnliao完成签到,获得积分10
17秒前
18秒前
18秒前
无尘发布了新的文献求助10
18秒前
19秒前
20秒前
bai发布了新的文献求助10
20秒前
轻松的万恶完成签到,获得积分20
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788