已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vision transformer attention with multi-reservoir echo state network for anomaly recognition

计算机科学 异常检测 人工智能 变压器 模式识别(心理学) 数据挖掘 工程类 电气工程 电压
作者
Waseem Ullah,Tanveer Hussain,Sung Wook Baik
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (3): 103289-103289 被引量:31
标识
DOI:10.1016/j.ipm.2023.103289
摘要

Anomalous event recognition requires an instant response to reduce the loss of human life and property; however, existing automated systems show limited performance due to considerations related to the temporal domain of the videos and ignore the significant role of spatial information. Furthermore, although current surveillance systems can detect anomalous events, they require human intervention to recognise their nature and to select appropriate countermeasures, as there are no fully automatic surveillance techniques that can simultaneously detect and interpret anomalous events. Therefore, we present a framework called Vision Transformer Anomaly Recognition (ViT-ARN) that can detect and interpret anomalies in smart city surveillance videos. The framework consists of two stages: the first involves online anomaly detection, for which a customised, lightweight, one-class deep neural network is developed to detect anomalies in a surveillance environment, while in the second stage, the detected anomaly is further classified into the corresponding class. The size of our anomaly detection model is compressed using a filter pruning strategy based on a geometric median, with the aim of easy adaptability for resource-constrained devices. Anomaly classification is based on vision transformer features and is followed by a bottleneck attention mechanism to enhance the representation. The refined features are passed to a multi-reservoir echo state network for a detailed analysis of real-world anomalies such as vandalism and road accidents. A total of 858 and 1600 videos from two datasets are used to train the proposed model, and extensive experiments on the LAD-2000 and UCF-Crime datasets comprising 290 and 400 testing videos reveal that our framework can recognise anomalies more effectively, outperforming other state-of-the-art approaches with increases in accuracy of 10.14% and 3% on the LAD-2000 and UCF-Crime datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助追寻的沛白采纳,获得10
1秒前
2秒前
123发布了新的文献求助10
2秒前
Vento发布了新的文献求助10
5秒前
DODO完成签到,获得积分10
5秒前
phil发布了新的文献求助10
7秒前
Kristine完成签到 ,获得积分10
11秒前
12秒前
12秒前
YEEQQ完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Tsing发布了新的文献求助10
16秒前
Owen应助林泽华采纳,获得10
16秒前
日尧发布了新的文献求助10
16秒前
森距离发布了新的文献求助10
17秒前
YEEQQ发布了新的文献求助10
19秒前
若水完成签到,获得积分10
20秒前
20秒前
自然馈赠发布了新的文献求助10
21秒前
22秒前
23秒前
婷妞儿完成签到,获得积分10
23秒前
汤峻熙发布了新的文献求助30
23秒前
ding应助dongyi采纳,获得10
24秒前
Dian发布了新的文献求助10
25秒前
Lucas完成签到,获得积分10
25秒前
郭氧化氢发布了新的文献求助10
26秒前
婷妞儿发布了新的文献求助20
28秒前
浮游应助爱听歌的亦玉采纳,获得10
28秒前
30秒前
饭饭发布了新的文献求助10
31秒前
31秒前
完美世界应助Tsing采纳,获得10
31秒前
31秒前
33秒前
33秒前
喵了个咪发布了新的文献求助30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006339
求助须知:如何正确求助?哪些是违规求助? 4249798
关于积分的说明 13241890
捐赠科研通 4049734
什么是DOI,文献DOI怎么找? 2215439
邀请新用户注册赠送积分活动 1225363
关于科研通互助平台的介绍 1145991