Vision transformer attention with multi-reservoir echo state network for anomaly recognition

计算机科学 异常检测 人工智能 变压器 模式识别(心理学) 数据挖掘 工程类 电气工程 电压
作者
Waseem Ullah,Tanveer Hussain,Sung Wook Baik
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103289-103289 被引量:31
标识
DOI:10.1016/j.ipm.2023.103289
摘要

Anomalous event recognition requires an instant response to reduce the loss of human life and property; however, existing automated systems show limited performance due to considerations related to the temporal domain of the videos and ignore the significant role of spatial information. Furthermore, although current surveillance systems can detect anomalous events, they require human intervention to recognise their nature and to select appropriate countermeasures, as there are no fully automatic surveillance techniques that can simultaneously detect and interpret anomalous events. Therefore, we present a framework called Vision Transformer Anomaly Recognition (ViT-ARN) that can detect and interpret anomalies in smart city surveillance videos. The framework consists of two stages: the first involves online anomaly detection, for which a customised, lightweight, one-class deep neural network is developed to detect anomalies in a surveillance environment, while in the second stage, the detected anomaly is further classified into the corresponding class. The size of our anomaly detection model is compressed using a filter pruning strategy based on a geometric median, with the aim of easy adaptability for resource-constrained devices. Anomaly classification is based on vision transformer features and is followed by a bottleneck attention mechanism to enhance the representation. The refined features are passed to a multi-reservoir echo state network for a detailed analysis of real-world anomalies such as vandalism and road accidents. A total of 858 and 1600 videos from two datasets are used to train the proposed model, and extensive experiments on the LAD-2000 and UCF-Crime datasets comprising 290 and 400 testing videos reveal that our framework can recognise anomalies more effectively, outperforming other state-of-the-art approaches with increases in accuracy of 10.14% and 3% on the LAD-2000 and UCF-Crime datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助辛辛采纳,获得10
刚刚
轻松发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
害羞便当完成签到 ,获得积分10
3秒前
bkagyin应助哈机密南北撸多采纳,获得10
3秒前
Wu完成签到,获得积分10
3秒前
Lexi完成签到,获得积分20
4秒前
4秒前
邱乐乐发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Nes发布了新的文献求助10
5秒前
大模型应助winwing采纳,获得30
5秒前
6秒前
6秒前
秀丽的小懒虫完成签到,获得积分10
6秒前
清明居士发布了新的文献求助10
7秒前
嘻嘻哈哈发布了新的文献求助10
7秒前
8秒前
Fortune发布了新的文献求助10
9秒前
9秒前
10秒前
sasa发布了新的文献求助10
10秒前
Lexi发布了新的文献求助10
10秒前
积极的凝云完成签到,获得积分10
10秒前
半夏发布了新的文献求助10
10秒前
月星发布了新的文献求助10
11秒前
睿力发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
伶俐的夜梦完成签到,获得积分10
11秒前
Tracy完成签到,获得积分10
12秒前
随便关注了科研通微信公众号
12秒前
TIAMO完成签到,获得积分10
13秒前
13秒前
Nes完成签到,获得积分20
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802