Vision transformer attention with multi-reservoir echo state network for anomaly recognition

计算机科学 异常检测 人工智能 变压器 模式识别(心理学) 数据挖掘 工程类 电气工程 电压
作者
Waseem Ullah,Tanveer Hussain,Sung Wook Baik
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103289-103289 被引量:31
标识
DOI:10.1016/j.ipm.2023.103289
摘要

Anomalous event recognition requires an instant response to reduce the loss of human life and property; however, existing automated systems show limited performance due to considerations related to the temporal domain of the videos and ignore the significant role of spatial information. Furthermore, although current surveillance systems can detect anomalous events, they require human intervention to recognise their nature and to select appropriate countermeasures, as there are no fully automatic surveillance techniques that can simultaneously detect and interpret anomalous events. Therefore, we present a framework called Vision Transformer Anomaly Recognition (ViT-ARN) that can detect and interpret anomalies in smart city surveillance videos. The framework consists of two stages: the first involves online anomaly detection, for which a customised, lightweight, one-class deep neural network is developed to detect anomalies in a surveillance environment, while in the second stage, the detected anomaly is further classified into the corresponding class. The size of our anomaly detection model is compressed using a filter pruning strategy based on a geometric median, with the aim of easy adaptability for resource-constrained devices. Anomaly classification is based on vision transformer features and is followed by a bottleneck attention mechanism to enhance the representation. The refined features are passed to a multi-reservoir echo state network for a detailed analysis of real-world anomalies such as vandalism and road accidents. A total of 858 and 1600 videos from two datasets are used to train the proposed model, and extensive experiments on the LAD-2000 and UCF-Crime datasets comprising 290 and 400 testing videos reveal that our framework can recognise anomalies more effectively, outperforming other state-of-the-art approaches with increases in accuracy of 10.14% and 3% on the LAD-2000 and UCF-Crime datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DM发布了新的文献求助10
刚刚
刚刚
拾七完成签到,获得积分10
刚刚
sghsh完成签到,获得积分10
1秒前
干一行恨一行完成签到,获得积分10
1秒前
1秒前
十九岁的时差完成签到,获得积分10
1秒前
小蘑菇应助Jianhong采纳,获得10
2秒前
2秒前
一棵树完成签到,获得积分10
2秒前
36456657应助Katyusha采纳,获得20
2秒前
3秒前
星星完成签到,获得积分10
3秒前
科研通AI6应助敬之采纳,获得10
3秒前
4秒前
4秒前
mzmz发布了新的文献求助10
4秒前
林昊完成签到,获得积分10
4秒前
5秒前
复苏应助郭mm采纳,获得10
5秒前
samsara完成签到 ,获得积分10
5秒前
铭铭铭完成签到,获得积分10
5秒前
小米应助郭mm采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
我是老大应助九bai采纳,获得10
5秒前
6秒前
6秒前
XI_2001发布了新的文献求助10
6秒前
6秒前
6秒前
xW12123完成签到,获得积分10
7秒前
7秒前
7秒前
季秋十二发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210