已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Vision transformer attention with multi-reservoir echo state network for anomaly recognition

计算机科学 异常检测 人工智能 变压器 模式识别(心理学) 数据挖掘 工程类 电气工程 电压
作者
Waseem Ullah,Tanveer Hussain,Sung Wook Baik
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103289-103289 被引量:31
标识
DOI:10.1016/j.ipm.2023.103289
摘要

Anomalous event recognition requires an instant response to reduce the loss of human life and property; however, existing automated systems show limited performance due to considerations related to the temporal domain of the videos and ignore the significant role of spatial information. Furthermore, although current surveillance systems can detect anomalous events, they require human intervention to recognise their nature and to select appropriate countermeasures, as there are no fully automatic surveillance techniques that can simultaneously detect and interpret anomalous events. Therefore, we present a framework called Vision Transformer Anomaly Recognition (ViT-ARN) that can detect and interpret anomalies in smart city surveillance videos. The framework consists of two stages: the first involves online anomaly detection, for which a customised, lightweight, one-class deep neural network is developed to detect anomalies in a surveillance environment, while in the second stage, the detected anomaly is further classified into the corresponding class. The size of our anomaly detection model is compressed using a filter pruning strategy based on a geometric median, with the aim of easy adaptability for resource-constrained devices. Anomaly classification is based on vision transformer features and is followed by a bottleneck attention mechanism to enhance the representation. The refined features are passed to a multi-reservoir echo state network for a detailed analysis of real-world anomalies such as vandalism and road accidents. A total of 858 and 1600 videos from two datasets are used to train the proposed model, and extensive experiments on the LAD-2000 and UCF-Crime datasets comprising 290 and 400 testing videos reveal that our framework can recognise anomalies more effectively, outperforming other state-of-the-art approaches with increases in accuracy of 10.14% and 3% on the LAD-2000 and UCF-Crime datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xchqb发布了新的文献求助10
刚刚
2秒前
7秒前
沈茜发布了新的文献求助10
7秒前
shuhaha完成签到,获得积分10
9秒前
10秒前
hodi完成签到,获得积分10
11秒前
Heyley完成签到,获得积分10
12秒前
聪明梦松发布了新的文献求助10
12秒前
14秒前
小蘑菇应助miyya采纳,获得10
15秒前
呆二龙完成签到 ,获得积分10
17秒前
17秒前
Otter完成签到,获得积分0
18秒前
18秒前
和谐诗双完成签到 ,获得积分10
20秒前
LY完成签到,获得积分10
20秒前
duan完成签到 ,获得积分10
25秒前
大鼻子的新四岁完成签到,获得积分10
28秒前
29秒前
今后应助LY采纳,获得10
30秒前
yohana完成签到 ,获得积分10
31秒前
胡萝卜完成签到,获得积分10
36秒前
38秒前
rengar完成签到,获得积分10
40秒前
李爱国应助科研通管家采纳,获得10
40秒前
汉堡包应助科研通管家采纳,获得10
40秒前
JamesPei应助科研通管家采纳,获得10
40秒前
天天快乐应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
顾矜应助科研通管家采纳,获得10
40秒前
CipherSage应助科研通管家采纳,获得10
40秒前
40秒前
Lan应助科研通管家采纳,获得10
40秒前
天天快乐应助科研通管家采纳,获得30
40秒前
monster完成签到 ,获得积分10
41秒前
腼腆钵钵鸡完成签到 ,获得积分10
42秒前
hhh完成签到,获得积分10
46秒前
neroil完成签到,获得积分10
48秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356315
求助须知:如何正确求助?哪些是违规求助? 4488125
关于积分的说明 13971650
捐赠科研通 4388976
什么是DOI,文献DOI怎么找? 2411319
邀请新用户注册赠送积分活动 1403874
关于科研通互助平台的介绍 1377700