Vision transformer attention with multi-reservoir echo state network for anomaly recognition

计算机科学 异常检测 人工智能 变压器 模式识别(心理学) 数据挖掘 工程类 电气工程 电压
作者
Waseem Ullah,Tanveer Hussain,Sung Wook Baik
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103289-103289 被引量:11
标识
DOI:10.1016/j.ipm.2023.103289
摘要

Anomalous event recognition requires an instant response to reduce the loss of human life and property; however, existing automated systems show limited performance due to considerations related to the temporal domain of the videos and ignore the significant role of spatial information. Furthermore, although current surveillance systems can detect anomalous events, they require human intervention to recognise their nature and to select appropriate countermeasures, as there are no fully automatic surveillance techniques that can simultaneously detect and interpret anomalous events. Therefore, we present a framework called Vision Transformer Anomaly Recognition (ViT-ARN) that can detect and interpret anomalies in smart city surveillance videos. The framework consists of two stages: the first involves online anomaly detection, for which a customised, lightweight, one-class deep neural network is developed to detect anomalies in a surveillance environment, while in the second stage, the detected anomaly is further classified into the corresponding class. The size of our anomaly detection model is compressed using a filter pruning strategy based on a geometric median, with the aim of easy adaptability for resource-constrained devices. Anomaly classification is based on vision transformer features and is followed by a bottleneck attention mechanism to enhance the representation. The refined features are passed to a multi-reservoir echo state network for a detailed analysis of real-world anomalies such as vandalism and road accidents. A total of 858 and 1600 videos from two datasets are used to train the proposed model, and extensive experiments on the LAD-2000 and UCF-Crime datasets comprising 290 and 400 testing videos reveal that our framework can recognise anomalies more effectively, outperforming other state-of-the-art approaches with increases in accuracy of 10.14% and 3% on the LAD-2000 and UCF-Crime datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛瑙发布了新的文献求助10
刚刚
Kaysen92发布了新的文献求助10
1秒前
微笑的雪糕完成签到,获得积分10
1秒前
老北京发布了新的文献求助10
3秒前
眼睛大天抒完成签到,获得积分20
3秒前
3秒前
sci来完成签到,获得积分10
4秒前
温婉的凝丹完成签到 ,获得积分10
4秒前
rh1006完成签到,获得积分10
5秒前
5秒前
feng完成签到,获得积分10
5秒前
Wenfeifei发布了新的文献求助30
5秒前
老北京发布了新的文献求助10
5秒前
刘大可完成签到,获得积分10
6秒前
老北京发布了新的文献求助10
6秒前
6秒前
爸爸完成签到,获得积分10
7秒前
Kaysen92完成签到,获得积分10
7秒前
9秒前
9秒前
现代的芹发布了新的文献求助10
9秒前
111111完成签到,获得积分10
10秒前
10秒前
震动的修洁完成签到 ,获得积分10
11秒前
fukesi发布了新的文献求助10
11秒前
ff发布了新的文献求助10
12秒前
mojomars完成签到,获得积分10
13秒前
14秒前
熊玉然完成签到,获得积分10
15秒前
15秒前
糖果乖乖完成签到 ,获得积分10
15秒前
俗丨完成签到,获得积分10
16秒前
个性的紫菜应助cywzhcr采纳,获得10
17秒前
炙热芷蕊发布了新的文献求助20
18秒前
18秒前
18秒前
五角星完成签到,获得积分20
19秒前
哇塞菌菌发布了新的文献求助10
19秒前
20秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012