A combined model based on CT radiomics and clinical variables to predict uric acid calculi which have a good accuracy

列线图 接收机工作特性 逻辑回归 Lasso(编程语言) 人工智能 随机森林 无线电技术 特征选择 支持向量机 医学 稳健性(进化) 多元统计 机器学习 放射科 计算机科学 内科学 基因 万维网 生物化学 化学
作者
Zijie Wang,Guangli Yang,Xinning Wang,Yuanchao Cao,Wei Jiao,Haitao Niu
出处
期刊:Urolithiasis [Springer Nature]
卷期号:51 (1) 被引量:3
标识
DOI:10.1007/s00240-023-01405-x
摘要

The aim of this study was to develop a CT-based radiomics and clinical variable diagnostic model for the preoperative prediction of uric acid calculi. In this retrospective study, 370 patients with urolithiasis who underwent preoperative urinary CT scans were enrolled. The CT images of each patient were manually segmented, and radiomics features were extracted. Sixteen radiomics features were selected by one-way analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO). Logistic regression (LR), random forest (RF) and support vector machine (SVM) were used to model the selected features, and the model with the best performance was selected. Multivariate logistic regression was used to screen out significant clinical variables, and the radiomics features and clinical variables were combined to construct a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), etc., were used to evaluate the diagnostic performance of the model. Among the three machine learning models, the LR model had the best performance and good robustness of the dataset. Therefore, the LR model was used to construct the nomogram. The AUCs of the nomogram model in the training set and validation set were 0.878 and 0.867, respectively, which were significantly higher than those of the radiomics model and the clinical feature model. The CT-based radiomics model based has good performance in distinguishing uric acid stones from nonuric acid stones, and the nomogram model has the best diagnostic performance among the three models. This model can provide an effective reference for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yf_zhu发布了新的文献求助10
刚刚
正直亦旋发布了新的文献求助10
刚刚
1秒前
华仔应助招财不肥采纳,获得10
1秒前
健康的梦曼完成签到 ,获得积分10
1秒前
最最最发布了新的文献求助10
1秒前
科研是什么鬼完成签到,获得积分10
3秒前
3秒前
4秒前
欢喜素阴完成签到 ,获得积分10
5秒前
yirenli完成签到,获得积分10
5秒前
希望天下0贩的0应助DAYTOY采纳,获得10
5秒前
狮子座完成签到,获得积分10
5秒前
爆米花应助润润轩轩采纳,获得10
5秒前
7秒前
熊boy完成签到,获得积分10
7秒前
1233完成签到,获得积分10
7秒前
Chang发布了新的文献求助10
7秒前
111222发布了新的文献求助50
7秒前
wxd发布了新的文献求助10
8秒前
上官若男应助浅笑采纳,获得10
9秒前
英姑应助Lxxixixi采纳,获得10
9秒前
斯文败类应助lichaoyes采纳,获得10
9秒前
aaaaa完成签到,获得积分10
9秒前
唉呦嘿发布了新的文献求助10
10秒前
共享精神应助迅速宛筠采纳,获得10
10秒前
上上谦应助酷炫过客采纳,获得10
10秒前
脑洞疼应助酷炫过客采纳,获得10
11秒前
千幻发布了新的文献求助10
11秒前
11秒前
12秒前
英俊的铭应助俎树同采纳,获得10
13秒前
13秒前
liyiren完成签到,获得积分10
14秒前
14秒前
k7完成签到,获得积分10
14秒前
bc发布了新的文献求助10
14秒前
cui123完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762