A combined model based on CT radiomics and clinical variables to predict uric acid calculi which have a good accuracy

列线图 接收机工作特性 逻辑回归 Lasso(编程语言) 人工智能 随机森林 无线电技术 特征选择 支持向量机 医学 稳健性(进化) 多元统计 机器学习 放射科 计算机科学 内科学 生物化学 化学 万维网 基因
作者
Zijie Wang,Guangli Yang,Xinning Wang,Yuanchao Cao,Wei Jiao,Haitao Niu
出处
期刊:Urolithiasis [Springer Nature]
卷期号:51 (1) 被引量:3
标识
DOI:10.1007/s00240-023-01405-x
摘要

The aim of this study was to develop a CT-based radiomics and clinical variable diagnostic model for the preoperative prediction of uric acid calculi. In this retrospective study, 370 patients with urolithiasis who underwent preoperative urinary CT scans were enrolled. The CT images of each patient were manually segmented, and radiomics features were extracted. Sixteen radiomics features were selected by one-way analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO). Logistic regression (LR), random forest (RF) and support vector machine (SVM) were used to model the selected features, and the model with the best performance was selected. Multivariate logistic regression was used to screen out significant clinical variables, and the radiomics features and clinical variables were combined to construct a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), etc., were used to evaluate the diagnostic performance of the model. Among the three machine learning models, the LR model had the best performance and good robustness of the dataset. Therefore, the LR model was used to construct the nomogram. The AUCs of the nomogram model in the training set and validation set were 0.878 and 0.867, respectively, which were significantly higher than those of the radiomics model and the clinical feature model. The CT-based radiomics model based has good performance in distinguishing uric acid stones from nonuric acid stones, and the nomogram model has the best diagnostic performance among the three models. This model can provide an effective reference for clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助TearMarks采纳,获得10
刚刚
silin完成签到,获得积分10
刚刚
小豆包完成签到,获得积分20
1秒前
xttju2014发布了新的文献求助10
1秒前
1秒前
super完成签到,获得积分20
2秒前
2秒前
Ak完成签到,获得积分0
2秒前
田小班发布了新的文献求助10
3秒前
Irene发布了新的文献求助10
3秒前
认真日记本完成签到 ,获得积分10
3秒前
www发布了新的文献求助10
3秒前
4秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
4秒前
李小莉0419发布了新的文献求助10
4秒前
Ava应助MC采纳,获得10
5秒前
baobaot发布了新的文献求助30
5秒前
5秒前
承乐应助小豆包采纳,获得10
5秒前
英姑应助小豆包采纳,获得10
5秒前
秋寒完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
斯文败类应助mikiisme采纳,获得10
7秒前
algain完成签到,获得积分10
7秒前
Wizzzzzzzy发布了新的文献求助10
7秒前
necos发布了新的文献求助10
10秒前
10秒前
11秒前
fmx完成签到,获得积分10
11秒前
残剑月发布了新的文献求助10
12秒前
12秒前
weihongjuan发布了新的文献求助10
12秒前
帅气的馒头应助酷炫初雪采纳,获得10
12秒前
janette完成签到,获得积分10
13秒前
爆米花应助乌衣白马采纳,获得10
13秒前
13秒前
财神爷心尖尖的宝儿完成签到,获得积分10
14秒前
zyc发布了新的文献求助10
14秒前
nn完成签到,获得积分20
14秒前
阿屁屁猪完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836