A combined model based on CT radiomics and clinical variables to predict uric acid calculi which have a good accuracy

列线图 接收机工作特性 逻辑回归 Lasso(编程语言) 人工智能 随机森林 无线电技术 特征选择 支持向量机 医学 稳健性(进化) 多元统计 机器学习 放射科 计算机科学 内科学 基因 万维网 生物化学 化学
作者
Zijie Wang,Guangli Yang,Xinning Wang,Yuanchao Cao,Wei Jiao,Haitao Niu
出处
期刊:Urolithiasis [Springer Science+Business Media]
卷期号:51 (1) 被引量:3
标识
DOI:10.1007/s00240-023-01405-x
摘要

The aim of this study was to develop a CT-based radiomics and clinical variable diagnostic model for the preoperative prediction of uric acid calculi. In this retrospective study, 370 patients with urolithiasis who underwent preoperative urinary CT scans were enrolled. The CT images of each patient were manually segmented, and radiomics features were extracted. Sixteen radiomics features were selected by one-way analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO). Logistic regression (LR), random forest (RF) and support vector machine (SVM) were used to model the selected features, and the model with the best performance was selected. Multivariate logistic regression was used to screen out significant clinical variables, and the radiomics features and clinical variables were combined to construct a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), etc., were used to evaluate the diagnostic performance of the model. Among the three machine learning models, the LR model had the best performance and good robustness of the dataset. Therefore, the LR model was used to construct the nomogram. The AUCs of the nomogram model in the training set and validation set were 0.878 and 0.867, respectively, which were significantly higher than those of the radiomics model and the clinical feature model. The CT-based radiomics model based has good performance in distinguishing uric acid stones from nonuric acid stones, and the nomogram model has the best diagnostic performance among the three models. This model can provide an effective reference for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
石金胜完成签到,获得积分10
1秒前
2秒前
2秒前
醉熏的天薇完成签到,获得积分10
2秒前
csy发布了新的文献求助10
3秒前
英姑应助壮观的菠萝采纳,获得10
5秒前
Akim应助tcf采纳,获得10
5秒前
7秒前
Owen应助ww采纳,获得10
7秒前
hazhuxixi发布了新的文献求助10
7秒前
8秒前
Ezio_sunhao完成签到,获得积分10
8秒前
陈希铭发布了新的文献求助10
9秒前
光的本质完成签到,获得积分20
10秒前
zero完成签到 ,获得积分10
11秒前
佳佳发布了新的文献求助10
12秒前
666应助Lee采纳,获得10
12秒前
12秒前
xusuizi发布了新的文献求助10
12秒前
14秒前
qxy完成签到 ,获得积分10
14秒前
16秒前
16秒前
zuo完成签到,获得积分10
16秒前
专注乌冬面完成签到,获得积分10
16秒前
牛牛眉目发布了新的文献求助10
17秒前
淡淡的绿柳关注了科研通微信公众号
18秒前
18秒前
19秒前
20秒前
weiwei发布了新的文献求助10
21秒前
笑哦发布了新的文献求助10
21秒前
21秒前
跳跳虎发布了新的文献求助10
23秒前
大模型应助俊逸谷云采纳,获得10
23秒前
Erhei发布了新的文献求助10
24秒前
mincey发布了新的文献求助10
24秒前
诺颜爱完成签到,获得积分10
26秒前
Avicii完成签到 ,获得积分0
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388