A combined model based on CT radiomics and clinical variables to predict uric acid calculi which have a good accuracy

列线图 接收机工作特性 逻辑回归 Lasso(编程语言) 人工智能 随机森林 无线电技术 特征选择 支持向量机 医学 稳健性(进化) 多元统计 机器学习 放射科 计算机科学 内科学 基因 万维网 生物化学 化学
作者
Zijie Wang,Guangli Yang,Xinning Wang,Yuanchao Cao,Wei Jiao,Haitao Niu
出处
期刊:Urolithiasis [Springer Nature]
卷期号:51 (1) 被引量:3
标识
DOI:10.1007/s00240-023-01405-x
摘要

The aim of this study was to develop a CT-based radiomics and clinical variable diagnostic model for the preoperative prediction of uric acid calculi. In this retrospective study, 370 patients with urolithiasis who underwent preoperative urinary CT scans were enrolled. The CT images of each patient were manually segmented, and radiomics features were extracted. Sixteen radiomics features were selected by one-way analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO). Logistic regression (LR), random forest (RF) and support vector machine (SVM) were used to model the selected features, and the model with the best performance was selected. Multivariate logistic regression was used to screen out significant clinical variables, and the radiomics features and clinical variables were combined to construct a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), etc., were used to evaluate the diagnostic performance of the model. Among the three machine learning models, the LR model had the best performance and good robustness of the dataset. Therefore, the LR model was used to construct the nomogram. The AUCs of the nomogram model in the training set and validation set were 0.878 and 0.867, respectively, which were significantly higher than those of the radiomics model and the clinical feature model. The CT-based radiomics model based has good performance in distinguishing uric acid stones from nonuric acid stones, and the nomogram model has the best diagnostic performance among the three models. This model can provide an effective reference for clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智灯泡发布了新的文献求助10
1秒前
1秒前
852应助百羊采纳,获得10
1秒前
文静萤发布了新的文献求助10
2秒前
隐形的baby发布了新的文献求助10
2秒前
隐形曼青应助GGMJ采纳,获得10
2秒前
旺仔不甜完成签到,获得积分10
3秒前
丘比特应助June采纳,获得10
5秒前
liusha发布了新的文献求助10
6秒前
Hello应助mira采纳,获得10
8秒前
9秒前
科研通AI6应助小易采纳,获得10
10秒前
lxt完成签到,获得积分10
12秒前
14秒前
14秒前
怜然关注了科研通微信公众号
16秒前
情怀应助李杰采纳,获得10
18秒前
所所应助天天开心采纳,获得10
18秒前
初一发布了新的文献求助10
18秒前
赘婿应助万松辉采纳,获得10
18秒前
19秒前
ysws完成签到,获得积分10
20秒前
Orange应助乐观的颦采纳,获得10
20秒前
完美世界应助June采纳,获得10
22秒前
23秒前
23秒前
闪闪完成签到,获得积分10
25秒前
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
25秒前
所所应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得20
26秒前
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073