A combined model based on CT radiomics and clinical variables to predict uric acid calculi which have a good accuracy

列线图 接收机工作特性 逻辑回归 Lasso(编程语言) 人工智能 随机森林 无线电技术 特征选择 支持向量机 医学 稳健性(进化) 多元统计 机器学习 放射科 计算机科学 内科学 基因 万维网 生物化学 化学
作者
Zijie Wang,Guangli Yang,Xinning Wang,Yuanchao Cao,Wei Jiao,Haitao Niu
出处
期刊:Urolithiasis [Springer Science+Business Media]
卷期号:51 (1) 被引量:3
标识
DOI:10.1007/s00240-023-01405-x
摘要

The aim of this study was to develop a CT-based radiomics and clinical variable diagnostic model for the preoperative prediction of uric acid calculi. In this retrospective study, 370 patients with urolithiasis who underwent preoperative urinary CT scans were enrolled. The CT images of each patient were manually segmented, and radiomics features were extracted. Sixteen radiomics features were selected by one-way analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO). Logistic regression (LR), random forest (RF) and support vector machine (SVM) were used to model the selected features, and the model with the best performance was selected. Multivariate logistic regression was used to screen out significant clinical variables, and the radiomics features and clinical variables were combined to construct a nomogram model. The area under the receiver operating characteristic (ROC) curve (AUC), etc., were used to evaluate the diagnostic performance of the model. Among the three machine learning models, the LR model had the best performance and good robustness of the dataset. Therefore, the LR model was used to construct the nomogram. The AUCs of the nomogram model in the training set and validation set were 0.878 and 0.867, respectively, which were significantly higher than those of the radiomics model and the clinical feature model. The CT-based radiomics model based has good performance in distinguishing uric acid stones from nonuric acid stones, and the nomogram model has the best diagnostic performance among the three models. This model can provide an effective reference for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
翟肇永发布了新的文献求助10
1秒前
852应助诚心若男采纳,获得10
1秒前
1秒前
清秀语堂完成签到,获得积分10
1秒前
Lucas应助Chensir采纳,获得10
1秒前
夏老板喜欢夏天完成签到,获得积分10
1秒前
Louise完成签到,获得积分10
2秒前
AARON完成签到,获得积分10
2秒前
科研搬运工完成签到,获得积分10
2秒前
漪涙发布了新的文献求助10
2秒前
2秒前
Frank完成签到,获得积分10
3秒前
王博雅发布了新的文献求助10
3秒前
Jasper应助111采纳,获得10
3秒前
4秒前
阿吉发布了新的文献求助10
4秒前
4秒前
深情安青应助壳壳采纳,获得30
4秒前
猎户小姐发布了新的文献求助10
5秒前
大个应助lixx采纳,获得10
5秒前
Joyce发布了新的文献求助10
5秒前
眼睛大的雨雪完成签到,获得积分20
6秒前
6秒前
HJJHJH发布了新的文献求助100
6秒前
打打应助wumolijun采纳,获得30
7秒前
jiahuo1完成签到,获得积分10
7秒前
7秒前
De_Am0ur完成签到,获得积分10
8秒前
9秒前
mc1220发布了新的文献求助10
9秒前
翟肇永完成签到,获得积分10
9秒前
王博雅完成签到,获得积分10
9秒前
卢静静发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585514
求助须知:如何正确求助?哪些是违规求助? 4002204
关于积分的说明 12389666
捐赠科研通 3678349
什么是DOI,文献DOI怎么找? 2027265
邀请新用户注册赠送积分活动 1060773
科研通“疑难数据库(出版商)”最低求助积分说明 947278