涡轮机
风力发电
制氢
质子交换膜燃料电池
聚合物电解质膜电解
核工程
环境科学
材料科学
汽车工程
机械工程
工艺工程
电解质
电解
氢
电气工程
工程类
化学
电极
化学工程
有机化学
物理化学
燃料电池
作者
Tabbi Wilberforce,A.G. Olabi,Muhammad Imran,Enas Taha Sayed,Mohammad Ali Abdelkareem
标识
DOI:10.1016/j.ijhydene.2022.12.263
摘要
This investigation delves into the production of green hydrogen with the aid of a polymer electrolyte membrane electrolyzer with its source of energy harnessed from wind using a vertical axis wind turbine (VAWT). The integrated numerical approach was adopted in the simulation environment of MATLAB, Simulink, and Simscape™ to develop the comprehensive mathematical model of the system. The component-level models are linked to the electrolyser, and wind turbines are modelled distinctively considering their efficiencies. The study first explores current types of electrolysers, from their operational characteristics to their merits and demerits. The Proton Exchange Membrane Electrolysers were recommended as the best electrolysis alternative due to their fast start-up time, and the technology being matured. Various power electronics required in connecting the energy from the wind turbine to the electrolyser was equally discussed. Some of these notable power electronics include the Permanent Magnet Synchronous Generators (PMSG), Full Bridge Diode Rectifier, as well as DC–DC Buck Boost Converter. The study was conducted at Warwickshire area as the location for the installation of the Proton Exchange Membrane Electrolyser System. It was however deduced that the performance of the electrolyser was predominant at higher temperatures but lower pressures. The intensity of wind also had a direct correlation to the overall performance of the electrolyser. In summary, for the wind turbine under investigation, at 1 bar pressure and operating temperature of 20 °C, 65,770 L of hydrogen was produced and this is equivalent to 4656.3 kg of hydrogen or 156.4 kWh of energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI