Clinical-GAN: Trajectory Forecasting of Clinical Events using Transformer and Generative Adversarial Networks

计算机科学 变压器 鉴别器 生成语法 对抗制 诊断代码 人工智能 源代码 机器学习 数据挖掘 医学 电压 程序设计语言 电信 物理 量子力学 探测器 人口 环境卫生
作者
Vignesh Shankar,Elnaz Yousefi,Alireza Manashty,Dayne Blair,Deepika Teegapuram
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:138: 102507-102507 被引量:1
标识
DOI:10.1016/j.artmed.2023.102507
摘要

Predicting the trajectory of a disease at an early stage can aid physicians in offering effective treatment, prompt care to patients, and also avoid misdiagnosis. However, forecasting patient trajectories is challenging due to long-range dependencies, irregular intervals between consecutive admissions, and non-stationarity data. To address these challenges, we propose a novel method called Clinical-GAN, a Transformer-based Generative Adversarial Networks (GAN) to forecast the patients' medical codes for subsequent visits. First, we represent the patients' medical codes as a time-ordered sequence of tokens akin to language models. Then, a Transformer mechanism is used as a Generator to learn from existing patients' medical history and is trained adversarially against a Transformer-based Discriminator. We address the above mentioned challenges based on our data modeling and Transformer-based GAN architecture. Additionally, we enable the local interpretation of the model's prediction using a multi-head attention mechanism. We evaluated our method using a publicly available dataset, Medical Information Mart for Intensive Care IV v1.0 (MIMIC-IV), with more than 500,000 visits completed by around 196,000 adult patients over an 11-year period from 2008-2019. Clinical-GAN significantly outperforms baseline methods and existing works, as demonstrated through various experiments. Source code is at https://github.com/vigi30/Clinical-GAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
脑洞疼应助滔滔采纳,获得10
3秒前
3秒前
科研女侠完成签到,获得积分10
5秒前
5秒前
眯眯眼的海完成签到,获得积分10
6秒前
赵楠完成签到 ,获得积分10
6秒前
6秒前
斯文败类应助余周2024采纳,获得10
7秒前
7秒前
英勇含烟发布了新的文献求助10
8秒前
JiaxuanDai发布了新的文献求助10
8秒前
9秒前
橙子才是唯一的水果完成签到,获得积分10
11秒前
淡然冬灵应助Rage_Wang采纳,获得30
11秒前
vivianzzz完成签到,获得积分10
12秒前
哎哟你干嘛完成签到,获得积分10
12秒前
wang完成签到 ,获得积分10
14秒前
鳗鱼思天完成签到,获得积分10
17秒前
悠旷完成签到 ,获得积分10
17秒前
李爱国应助seven采纳,获得10
17秒前
Jieh发布了新的文献求助10
19秒前
JiaxuanDai完成签到,获得积分10
20秒前
淡然冬灵应助刘泓锦采纳,获得30
20秒前
王大锤完成签到,获得积分10
23秒前
24秒前
哈哈悦完成签到,获得积分10
25秒前
科研通AI5应助yaoyh_gc采纳,获得10
25秒前
26秒前
一颗苹果完成签到,获得积分10
26秒前
灵巧的翠桃完成签到,获得积分10
27秒前
斯文败类应助张张采纳,获得30
29秒前
小乔发布了新的文献求助10
30秒前
PONY发布了新的文献求助10
31秒前
zcc完成签到 ,获得积分10
31秒前
32秒前
吴天楚完成签到,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096