Intent Prediction in Human–Human Interactions

计算机科学 水准点(测量) 人工智能 采样(信号处理) 序列(生物学) 骨架(计算机编程) 班级(哲学) 接头(建筑物) 机器学习 样品(材料) 计算机视觉 建筑工程 化学 大地测量学 滤波器(信号处理) 色谱法 生物 工程类 遗传学 程序设计语言 地理
作者
Murchana Baruah,Bonny Banerjee,Atulya K. Nagar
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 458-463 被引量:2
标识
DOI:10.1109/thms.2023.3239648
摘要

The human ability to infer others' intent is innate and crucial to development. Machines ought to acquire this ability for seamless interaction with humans. In this article, we propose an agent model for predicting the intent of actors in human–human interactions. This requires simultaneous generation and recognition of an interaction at any time, for which end-to-end models are scarce. The proposed agent actively samples its environment via a sequence of glimpses. At each sampling instant, the model infers the observation class and completes the partially observed body motion. It learns the sequence of body locations to sample by jointly minimizing the classification and generation errors. The model is evaluated on videos of two-skeleton interactions under two settings: (first person) one skeleton is the modeled agent and the other skeleton's joint movements constitute its visual observation, and (third person) an audience is the modeled agent and the two interacting skeletons' joint movements constitute its visual observation. Three methods for implementing the attention mechanism are analyzed using benchmark datasets. One of them, where attention is driven by sensory prediction error, achieves the highest classification accuracy in both settings by sampling less than 50% of the skeleton joints, while also being the most efficient in terms of model size. This is the first known attention-based agent to learn end-to-end from two-person interactions for intent prediction, with high accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈时懿发布了新的文献求助10
刚刚
2秒前
彭于晏应助AAA咸鱼本鱼采纳,获得10
5秒前
5秒前
7秒前
乐乐应助谭平采纳,获得10
7秒前
8秒前
朱小小发布了新的文献求助10
8秒前
9秒前
烟花应助duansiyuan123采纳,获得10
13秒前
xyawl425完成签到,获得积分10
15秒前
17秒前
研友_Z1X6kn完成签到,获得积分10
17秒前
赘婿应助东方越彬采纳,获得20
17秒前
李健的小迷弟应助朱小小采纳,获得10
17秒前
xuhang完成签到,获得积分10
17秒前
钮卿完成签到,获得积分10
18秒前
wocao完成签到,获得积分10
19秒前
隐形曼青应助wujiasheng采纳,获得10
20秒前
明亮幻天发布了新的文献求助10
21秒前
27秒前
谭平发布了新的文献求助10
31秒前
搜集达人应助ke采纳,获得30
32秒前
一蓑烟雨任平生应助flow采纳,获得10
38秒前
调皮的翠绿完成签到 ,获得积分10
38秒前
正霖完成签到,获得积分10
42秒前
GZ完成签到,获得积分10
42秒前
谭平完成签到,获得积分10
42秒前
42秒前
43秒前
杳鸢应助安安安采纳,获得10
44秒前
Luobu_521发布了新的文献求助10
44秒前
孙抡发布了新的文献求助10
46秒前
朱小小发布了新的文献求助10
46秒前
46秒前
诚心的焱完成签到,获得积分10
48秒前
49秒前
沉静傲易完成签到,获得积分10
50秒前
加油呀发布了新的文献求助30
52秒前
慕青应助朱小小采纳,获得10
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292248
求助须知:如何正确求助?哪些是违规求助? 2928600
关于积分的说明 8437788
捐赠科研通 2600642
什么是DOI,文献DOI怎么找? 1419174
科研通“疑难数据库(出版商)”最低求助积分说明 660247
邀请新用户注册赠送积分活动 642906