Intent Prediction in Human–Human Interactions

计算机科学 水准点(测量) 人工智能 采样(信号处理) 序列(生物学) 骨架(计算机编程) 班级(哲学) 接头(建筑物) 机器学习 样品(材料) 计算机视觉 滤波器(信号处理) 工程类 生物 遗传学 建筑工程 化学 色谱法 程序设计语言 地理 大地测量学
作者
Murchana Baruah,Bonny Banerjee,Atulya K. Nagar
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 458-463 被引量:2
标识
DOI:10.1109/thms.2023.3239648
摘要

The human ability to infer others' intent is innate and crucial to development. Machines ought to acquire this ability for seamless interaction with humans. In this article, we propose an agent model for predicting the intent of actors in human–human interactions. This requires simultaneous generation and recognition of an interaction at any time, for which end-to-end models are scarce. The proposed agent actively samples its environment via a sequence of glimpses. At each sampling instant, the model infers the observation class and completes the partially observed body motion. It learns the sequence of body locations to sample by jointly minimizing the classification and generation errors. The model is evaluated on videos of two-skeleton interactions under two settings: (first person) one skeleton is the modeled agent and the other skeleton's joint movements constitute its visual observation, and (third person) an audience is the modeled agent and the two interacting skeletons' joint movements constitute its visual observation. Three methods for implementing the attention mechanism are analyzed using benchmark datasets. One of them, where attention is driven by sensory prediction error, achieves the highest classification accuracy in both settings by sampling less than 50% of the skeleton joints, while also being the most efficient in terms of model size. This is the first known attention-based agent to learn end-to-end from two-person interactions for intent prediction, with high accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
面面发布了新的文献求助10
1秒前
充电宝应助轻松砖头采纳,获得30
2秒前
4秒前
4秒前
5秒前
酷炫青烟完成签到 ,获得积分10
5秒前
善学以致用应助ztt采纳,获得10
5秒前
可爱小天才完成签到 ,获得积分10
6秒前
moonbeam完成签到,获得积分10
6秒前
木槿花难开完成签到,获得积分10
6秒前
6秒前
6秒前
研友_ngKyqn发布了新的文献求助10
6秒前
7秒前
快快乐乐巴完成签到,获得积分10
7秒前
小马甲应助张张不想长大采纳,获得10
7秒前
Ava应助王小西采纳,获得10
8秒前
8秒前
英姑应助油条采纳,获得10
8秒前
安浅发布了新的文献求助10
8秒前
9秒前
9秒前
林小昀发布了新的文献求助10
9秒前
10秒前
特昂唐发布了新的文献求助10
10秒前
10秒前
11秒前
lihuahui发布了新的文献求助10
11秒前
q792309106发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
小蘑菇应助FunHigh采纳,获得10
13秒前
ice.sweet发布了新的文献求助10
13秒前
13秒前
Emma完成签到 ,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126