Quantitative Modeling on Nonstationary Neural Spikes: From Reinforcement Learning to Point Process

计算机科学 神经解码 强化学习 人工智能 脑-机接口 人工神经网络 解码方法 适应(眼睛) 机器学习 算法 脑电图 神经科学 生物
作者
Xiang Zhang,Shuhang Chen,Yiwen Wang
标识
DOI:10.1007/978-981-16-5540-1_69
摘要

Brain-machine interface (BMI) allows disabled people to use their neural signals to control the external device accomplishing their movement intents. However, the brain keeps adapting during the interaction with the environment. The neural activity changes over time at both the ensemble and single-cell levels, which poses a challenge to maintain a stable decoding performance using a fixed model. The key is to design quantitative modeling on the nonstationary neural signals from different scales and develop adaptive decoders to merge with the plastic brain in a co-adaptive way. This chapter provides a comprehensive overview of the challenges for BMI decoder design, the effect of nonstationary neural activity on decoder performance, and the development of adaptive models. At the neural ensemble level, reinforcement learning (RL)-based decoders explore neural-action mappings through trial and error. Series of RL methods in decoder design are introduced, which explore the large state-action space with more efficiency, fast adaptation, and stable performance. At the single-cell level, the point process model statistically describes how neural spike timings relate to the spiking history, concurrent ensemble activity, and extrinsic stimuli or behavior. The main development of point process methods is presented from linear model to nonlinear model and from open-loop adaptation to closed-loop adaptation. The decoding results of different models are compared on the real neural data. Both RL algorithms and point process modeling provide the computational tools to describe the neural adaptation from multiple scales in BMIs, which helps the subject better control the neuroprostheses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
clientprogram应助Run采纳,获得20
1秒前
Ronnie发布了新的文献求助10
1秒前
华仔应助RUSTY采纳,获得10
3秒前
薛之谦发布了新的文献求助10
4秒前
皮皮发布了新的文献求助10
4秒前
5秒前
orixero应助优秀的枫采纳,获得10
6秒前
8秒前
科研通AI2S应助木头人采纳,获得30
8秒前
9秒前
10秒前
研友_enPaaZ完成签到,获得积分10
10秒前
10秒前
SYLH应助虚心的静枫采纳,获得20
11秒前
清樾完成签到 ,获得积分10
11秒前
杳鸢应助yunghx采纳,获得10
11秒前
yznfly应助顺心醉蝶采纳,获得150
11秒前
研友_VZG7GZ应助飞先生采纳,获得10
12秒前
善学以致用应助华123采纳,获得10
12秒前
蒋j发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
优秀的枫完成签到,获得积分20
16秒前
木头人应助Yuuuuu采纳,获得10
16秒前
17秒前
17秒前
优秀的枫发布了新的文献求助10
20秒前
蒋j完成签到,获得积分10
20秒前
yznfly应助坤舆探骊者采纳,获得30
21秒前
22秒前
22秒前
tjzhaoll发布了新的文献求助10
22秒前
赘婿应助熬夜大王采纳,获得10
22秒前
wwpedd给zhongu的求助进行了留言
22秒前
24秒前
灵巧的大开完成签到,获得积分10
24秒前
RUSTY发布了新的文献求助10
25秒前
qhjqljqd发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303