Quantitative Modeling on Nonstationary Neural Spikes: From Reinforcement Learning to Point Process

计算机科学 神经解码 强化学习 人工智能 脑-机接口 人工神经网络 解码方法 适应(眼睛) 机器学习 算法 脑电图 神经科学 生物
作者
Xiang Zhang,Shuhang Chen,Yiwen Wang
标识
DOI:10.1007/978-981-16-5540-1_69
摘要

Brain-machine interface (BMI) allows disabled people to use their neural signals to control the external device accomplishing their movement intents. However, the brain keeps adapting during the interaction with the environment. The neural activity changes over time at both the ensemble and single-cell levels, which poses a challenge to maintain a stable decoding performance using a fixed model. The key is to design quantitative modeling on the nonstationary neural signals from different scales and develop adaptive decoders to merge with the plastic brain in a co-adaptive way. This chapter provides a comprehensive overview of the challenges for BMI decoder design, the effect of nonstationary neural activity on decoder performance, and the development of adaptive models. At the neural ensemble level, reinforcement learning (RL)-based decoders explore neural-action mappings through trial and error. Series of RL methods in decoder design are introduced, which explore the large state-action space with more efficiency, fast adaptation, and stable performance. At the single-cell level, the point process model statistically describes how neural spike timings relate to the spiking history, concurrent ensemble activity, and extrinsic stimuli or behavior. The main development of point process methods is presented from linear model to nonlinear model and from open-loop adaptation to closed-loop adaptation. The decoding results of different models are compared on the real neural data. Both RL algorithms and point process modeling provide the computational tools to describe the neural adaptation from multiple scales in BMIs, which helps the subject better control the neuroprostheses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百事可乐发布了新的文献求助10
刚刚
刚刚
FashionBoy应助jianyulv采纳,获得10
1秒前
1秒前
吴茱萸汤发布了新的文献求助10
1秒前
健忘千雁发布了新的文献求助10
1秒前
清爽灰狼完成签到,获得积分10
2秒前
2秒前
咸鱼之王完成签到,获得积分10
2秒前
橘子完成签到,获得积分10
2秒前
快帮我找找完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
zz发布了新的文献求助10
7秒前
Owen应助我要吃蛋挞采纳,获得10
7秒前
yangyu完成签到,获得积分10
7秒前
一郭红烧肉完成签到,获得积分20
7秒前
永不停歇奈格里完成签到,获得积分10
7秒前
科研通AI6应助宇与鱼采纳,获得10
8秒前
香蕉觅云应助SS采纳,获得10
8秒前
zzzz发布了新的文献求助10
8秒前
8秒前
chixueqi发布了新的文献求助10
9秒前
Xu完成签到,获得积分10
10秒前
11秒前
11秒前
充电宝应助Desperado采纳,获得10
12秒前
英俊的铭应助zhouzhou采纳,获得10
12秒前
卖萌的秋田完成签到,获得积分10
12秒前
科研通AI5应助刘赟采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
0806发布了新的文献求助10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907