Quantitative Modeling on Nonstationary Neural Spikes: From Reinforcement Learning to Point Process

计算机科学 神经解码 强化学习 人工智能 脑-机接口 人工神经网络 解码方法 适应(眼睛) 机器学习 算法 脑电图 神经科学 生物
作者
Xiang Zhang,Shuhang Chen,Yiwen Wang
标识
DOI:10.1007/978-981-16-5540-1_69
摘要

Brain-machine interface (BMI) allows disabled people to use their neural signals to control the external device accomplishing their movement intents. However, the brain keeps adapting during the interaction with the environment. The neural activity changes over time at both the ensemble and single-cell levels, which poses a challenge to maintain a stable decoding performance using a fixed model. The key is to design quantitative modeling on the nonstationary neural signals from different scales and develop adaptive decoders to merge with the plastic brain in a co-adaptive way. This chapter provides a comprehensive overview of the challenges for BMI decoder design, the effect of nonstationary neural activity on decoder performance, and the development of adaptive models. At the neural ensemble level, reinforcement learning (RL)-based decoders explore neural-action mappings through trial and error. Series of RL methods in decoder design are introduced, which explore the large state-action space with more efficiency, fast adaptation, and stable performance. At the single-cell level, the point process model statistically describes how neural spike timings relate to the spiking history, concurrent ensemble activity, and extrinsic stimuli or behavior. The main development of point process methods is presented from linear model to nonlinear model and from open-loop adaptation to closed-loop adaptation. The decoding results of different models are compared on the real neural data. Both RL algorithms and point process modeling provide the computational tools to describe the neural adaptation from multiple scales in BMIs, which helps the subject better control the neuroprostheses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbbbfffff发布了新的文献求助10
刚刚
大模型应助哈哈采纳,获得10
刚刚
yyyyyy发布了新的文献求助50
1秒前
1秒前
科研通AI5应助墨白白采纳,获得10
1秒前
2秒前
2秒前
潇潇发布了新的文献求助10
2秒前
theThreeMagi发布了新的文献求助10
3秒前
桐桐应助纯情的菀采纳,获得10
3秒前
哦豁发布了新的文献求助10
3秒前
4秒前
炙热的萤发布了新的文献求助10
4秒前
4秒前
Dave完成签到,获得积分10
4秒前
4秒前
于于发布了新的文献求助10
4秒前
5秒前
iqin完成签到,获得积分20
5秒前
5秒前
乐乐应助cici采纳,获得10
5秒前
深情的若翠完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
研友_Z7XY28发布了新的文献求助10
8秒前
所所应助小葡萄采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
46464号发布了新的文献求助10
10秒前
10秒前
共享精神应助我要发文章采纳,获得10
10秒前
10秒前
万能图书馆应助swagger采纳,获得10
11秒前
vg完成签到 ,获得积分10
11秒前
ILS发布了新的文献求助30
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319