中央前回
红细胞压积
脑回
中央后回
解剖
内科学
生物
医学
神经科学
功能磁共振成像
磁共振成像
放射科
作者
Xinjuan Zhang,Weiwei Xie,Yanqiu Liu,Minglu Li,Jim J. Lin,Wu Yin,Lihui Yang,Pengji Li,Ying Sun,Tianzhi Li,Haipeng Liu,Hailin Ma,Jiliang Zhang
标识
DOI:10.1016/j.neuroscience.2023.01.019
摘要
Tibetans have adapted to high altitude environments. However, the genetic effects in their brains have not been identified. Twenty-five native Tibetans living in Lhasa (3650 m) were recruited for comparison with 20 Han immigrants who originated from lowlands and had been living in Lhasa for two years. The physiological characteristics, brain structure and neuronal spontaneous activity were investigated. Compared with Han immigrants, Tibetans showed higher peripheral oxygen saturation (SpO2), and lower heart rate, red blood cell counts, hematocrit, and hemoglobin. Tibetans showed increased gray matter volume in the visual cortex, hippocampus, and rectus; increased the amplitudes of low-frequency fluctuations (ALFF) values in the left putamen and left fusiform gyrus; and decreased voxel-mirrored homotopic connectivity (VMHC) values in the precentral gyrus. Moreover, Tibetans have decreased functional connectivity (FC) between the left precentral gyrus and the frontal gyrusand right precuneus. In Tibetans and Han immigrants, hemoglobin and hematocrit were negatively correlated with total gray matter volume in males, SpO2 was also positively correlated with ALFF in the left fusiform gyrus, while hemoglobin, and hematocrit were positively correlated with VMHC in the precentral gyrus and FC in the precentral gyrus with other brain regions, SpO2 was also found to be negatively correlated with VMHC in the precentral gyrus, and hemoglobin and hematocrit were negatively correlated with ALFF in the left putamen and left fusiform gyrus. In summary, genetic mutations may result in modulation of some brain regions, which was further confirmed by the identification of correlations with hemoglobin and hematocrit in these regions.
科研通智能强力驱动
Strongly Powered by AbleSci AI