Predicting long-term production dynamics in tight/shale gas reservoirs with dual-stage attention-based TEN-Seq2Seq model: A case study in Duvernay formation

油页岩 计算机科学 人工神经网络 编码 地质学 稳健性(进化) 人工智能 编码器 数据挖掘 算法 古生物学 生物化学 基因 操作系统 化学
作者
Hai Wang,Shuhua Wang,Shengnan Chen,Gang Hui
标识
DOI:10.1016/j.geoen.2023.211495
摘要

Production dynamics forecasting plays an important role in the decision-making and development scenario evaluation process throughout the entire life cycle of the unconventional tight/shale gas reservoirs. The traditional method such as decline curve analysis can't be applied prior to the wells are put into production as it heavily depends on the historical production for the estimation of parameters. In this work, a new artificial intelligence framework is proposed to predict the well behaviors by simultaneously processing the sequential and tabular data including well depth, proppant tonnage, and fracturing stages. Specifically, a time evolution network is employed first to encode the tabular features matrix into a pseudo-sequence tensor, and then an encoder-decoder architecture based on the dual-stage attention mechanism is used to extract effective information from the encoded information and capture long-term dependencies relationship. A comparison of the proposed model with the fully connected neural network (FCNN) and the long and short-term memory (LSTM) network indicates that the new framework has better generalization performance and robustness to predict well productivities, that is, the prediction errors are reduced by 65% and 50% respectively compared with LSTM and FCNN. Moreover, a bidirectional parametric rectified linear unit (BPReLU) is employed to adaptively learn the sign and magnitude of slopes. It is found that the error is further reduced by approximately 10% compared to that using PReLU. Also, four different target variables are defined, and the experimental results reveal that the average rate within the production time Vi is much easier to predict, with an average error of 19%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshine发布了新的文献求助10
2秒前
CLTTTt完成签到,获得积分10
7秒前
阜睿完成签到 ,获得积分10
7秒前
12秒前
卞卞完成签到,获得积分10
13秒前
25秒前
火星上小土豆完成签到 ,获得积分10
25秒前
爱撒娇的孤丹完成签到 ,获得积分10
27秒前
xc完成签到,获得积分10
27秒前
CHANG完成签到 ,获得积分10
29秒前
陈海明发布了新的文献求助10
29秒前
pep完成签到 ,获得积分10
36秒前
科研小哥完成签到,获得积分10
37秒前
小谭完成签到 ,获得积分10
38秒前
连难胜完成签到 ,获得积分10
40秒前
友好语风完成签到,获得积分10
44秒前
陈海明完成签到,获得积分10
47秒前
ikun0000完成签到,获得积分10
59秒前
她的城完成签到,获得积分0
1分钟前
1分钟前
ding应助烂漫的汲采纳,获得10
1分钟前
胡杨发布了新的文献求助10
1分钟前
Wmhan完成签到 ,获得积分10
1分钟前
寇婧怡完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
糊涂涂完成签到 ,获得积分10
1分钟前
烂漫的汲完成签到,获得积分10
1分钟前
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
我啊完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助股价采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
Jason-1024完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZGVzn完成签到,获得积分10
1分钟前
如意枫叶发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255