Predicting long-term production dynamics in tight/shale gas reservoirs with dual-stage attention-based TEN-Seq2Seq model: A case study in Duvernay formation

期限(时间) 页岩气 石油工程 油页岩 对偶(语法数字) 阶段(地层学) 生产(经济) 地质学 致密气 环境科学 岩石学 水力压裂 古生物学 物理 经济 艺术 文学类 量子力学 宏观经济学
作者
Hai Yan Wu,Shuhua Wang,Shengnan Chen,Gang Hui
标识
DOI:10.1016/j.geoen.2023.211495
摘要

Production dynamics forecasting plays an important role in the decision-making and development scenario evaluation process throughout the entire life cycle of the unconventional tight/shale gas reservoirs. The traditional method such as decline curve analysis can't be applied prior to the wells are put into production as it heavily depends on the historical production for the estimation of parameters. In this work, a new artificial intelligence framework is proposed to predict the well behaviors by simultaneously processing the sequential and tabular data including well depth, proppant tonnage, and fracturing stages. Specifically, a time evolution network is employed first to encode the tabular features matrix into a pseudo-sequence tensor, and then an encoder-decoder architecture based on the dual-stage attention mechanism is used to extract effective information from the encoded information and capture long-term dependencies relationship. A comparison of the proposed model with the fully connected neural network (FCNN) and the long and short-term memory (LSTM) network indicates that the new framework has better generalization performance and robustness to predict well productivities, that is, the prediction errors are reduced by 65% and 50% respectively compared with LSTM and FCNN. Moreover, a bidirectional parametric rectified linear unit (BPReLU) is employed to adaptively learn the sign and magnitude of slopes. It is found that the error is further reduced by approximately 10% compared to that using PReLU. Also, four different target variables are defined, and the experimental results reveal that the average rate within the production time Vi is much easier to predict, with an average error of 19%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Leo发布了新的文献求助10
1秒前
易川发布了新的文献求助10
3秒前
3秒前
4秒前
ronnie完成签到,获得积分10
4秒前
4秒前
碧蓝丹烟完成签到 ,获得积分10
5秒前
5秒前
5秒前
爱听歌的从筠完成签到,获得积分20
6秒前
spenley完成签到,获得积分10
6秒前
小二郎应助niekyang采纳,获得10
6秒前
ding应助AlwaysKim采纳,获得10
8秒前
杨冰完成签到,获得积分10
8秒前
Metx完成签到 ,获得积分10
8秒前
善学以致用应助Hiker采纳,获得10
9秒前
Leo完成签到,获得积分20
9秒前
Mr朱发布了新的文献求助10
9秒前
9秒前
kunkun发布了新的文献求助10
10秒前
烟花应助bxg采纳,获得10
10秒前
丫丫发布了新的文献求助10
11秒前
一独白完成签到 ,获得积分10
12秒前
12秒前
14秒前
GOD伟完成签到,获得积分10
15秒前
识途完成签到 ,获得积分10
15秒前
充电宝应助典雅的蜡烛采纳,获得10
16秒前
16秒前
LTY完成签到,获得积分10
16秒前
小铭的男仆完成签到,获得积分20
16秒前
热心的冷松完成签到,获得积分10
17秒前
勤奋的花前茶完成签到,获得积分10
18秒前
大尾巴白完成签到,获得积分10
18秒前
18秒前
18秒前
qq发布了新的文献求助10
19秒前
20秒前
蝈蝈完成签到,获得积分10
21秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557