Graph-Based Non-Sampling for Knowledge Graph Enhanced Recommendation

计算机科学 推荐系统 图形 中心性 理论计算机科学 嵌入 数据挖掘 机器学习 人工智能 数学 组合数学
作者
Shuang Liang,Jie Shao,Jiasheng Zhang,Bin Cui
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (9): 9462-9475 被引量:12
标识
DOI:10.1109/tkde.2023.3240832
摘要

Knowledge graph (KG) enhanced recommendation, which aims to solve the cold start and explainability in recommender systems, has attracted considerable research interest recently. Existing recommender systems usually focus on implicit feedback such as purchase history without negative feedback. Most of them apply the negative sampling strategy to deal with the implicit feedback data, which may ignore the latent positive user-item interaction. Some other works adopt the non-sampling strategy that treats all non-observed interactions as negative samples and assigns a weight for each negative sample to represent the probability that this sample is a positive sample. However, they use a simple and intuitive weight assignment strategy and cannot catch the latent relationship from all interaction data. To address these problems, we consider graph structure information of both user-item interaction and knowledge graph, and propose a Graph-based Non-Sampling strategy to achieve efficient performance in Knowledge graph enhanced Recommendation (GNSKR). GNSKR utilizes node centrality to significantly improve recommendation performance with low computation cost. Meanwhile, we combine knowledge graph embedding and recommendation task with a local aggregation block, which efficiently catches the high-order connection information in KG enhanced recommendation. Experiments on three datasets show that GNSKR embraces the state-of-the-art with competitive efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的听芹完成签到,获得积分10
刚刚
6666完成签到,获得积分20
1秒前
上善若水完成签到 ,获得积分10
2秒前
幸福妙柏发布了新的文献求助10
2秒前
岳桐发布了新的文献求助30
3秒前
淡淡嫣完成签到,获得积分10
5秒前
情怀应助浅夏采纳,获得10
6秒前
8秒前
Ava应助melody采纳,获得10
8秒前
llm19完成签到,获得积分10
9秒前
修士阿贤完成签到,获得积分10
9秒前
cryjslong完成签到,获得积分10
10秒前
文艺的青旋完成签到 ,获得积分10
12秒前
12秒前
Yy杨优秀发布了新的文献求助10
13秒前
13秒前
13秒前
搜集达人应助liyi采纳,获得10
14秒前
15秒前
15秒前
zhangpeng完成签到,获得积分10
15秒前
共享精神应助凶狠的半山采纳,获得10
16秒前
汉堡包应助跳跃的问薇采纳,获得10
17秒前
浅夏发布了新的文献求助10
17秒前
今后应助无误采纳,获得10
18秒前
ll发布了新的文献求助10
18秒前
tttt发布了新的文献求助30
18秒前
adreamy发布了新的文献求助10
19秒前
xiao双月发布了新的文献求助10
21秒前
21秒前
21秒前
乔柯完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
23秒前
浅夏完成签到,获得积分10
24秒前
24秒前
orixero应助JohnsonTse采纳,获得10
24秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075