Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer

石墨烯 双层石墨烯 碳纳米管 材料科学 电子 物理 纳米技术 凝聚态物理 核物理学
作者
H. V. Grushevskaya,Andrey Timoshchenko,И. В. Липневич
出处
期刊:Nanomaterials [MDPI AG]
卷期号:13 (3): 410-410 被引量:3
标识
DOI:10.3390/nano13030410
摘要

Graphene sheets are a highly radiation-resistant material for prospective nuclear applications and nanoscale defect engineering. However, the precise mechanism of graphene radiation hardness has remained elusive. In this paper, we study the origin and nature of defects induced by gamma radiation in a graphene rolled-up plane. In order to reduce the environmental influence on graphene and reveal the small effects of gamma rays, we have synthesized a novel graphene-based nanocomposite material containing a bilayer of highly aligned carbon nanotube assemblies that have been decorated by organometallic compounds and suspended on nanoporous Al2O3 membranes. The bilayer samples were irradiated by gamma rays from a 137Cs source with a fluence rate of the order of 105 m−2s−1. The interaction between the samples and gamma quanta results in the appearance of three characteristic photon escape peaks in the radiation spectra. We explain the mechanism of interaction between the graphene sheets and gamma radiation using a pseudo-Majorana fermion graphene model, which is a quasi-relativistic N=3-flavor graphene model with a Majorana-like mass term. This model admits the existence of giant charge carrier currents that are sufficient to neutralize the impact of ionizing radiation. Experimental evidence is provided for the prediction that the 661.7-keV gamma quanta transfer enough energy to the electron subsystem of graphene to bring about the deconfinement of the bound pseudo-Majorana modes and involve C atoms in a vortical motion of the electron density flows in the graphene plane. We explain the radiation hardness of graphene by the topological non-triviality of the pseudo-Majorana fermion configurations comprising the graphene charge carriers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助周华强采纳,获得10
1秒前
yixiaolou发布了新的文献求助10
1秒前
李爱国应助迷了路的猫采纳,获得10
2秒前
4秒前
LilG完成签到,获得积分10
4秒前
mingjie发布了新的文献求助10
5秒前
贾克斯发布了新的文献求助10
5秒前
7秒前
Ava应助Liexinun采纳,获得10
7秒前
知不道给123的求助进行了留言
7秒前
7秒前
zxj发布了新的文献求助10
9秒前
yixiaolou完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助121采纳,获得10
10秒前
10秒前
11秒前
黑大帅发布了新的文献求助10
11秒前
rainnyday发布了新的文献求助20
11秒前
雪白代萱发布了新的文献求助10
11秒前
11秒前
11秒前
14秒前
14秒前
14秒前
呆瓜发布了新的文献求助150
15秒前
彭于晏应助msj采纳,获得30
15秒前
16秒前
mouxq发布了新的文献求助10
16秒前
16秒前
彭于晏应助留胡子的函采纳,获得10
16秒前
支翰完成签到 ,获得积分10
17秒前
一一发布了新的文献求助10
17秒前
18秒前
bitahu发布了新的文献求助10
18秒前
orixero应助小小采纳,获得10
18秒前
19秒前
19秒前
研友_VZG7GZ应助姜建正采纳,获得10
19秒前
鲜于夜白完成签到,获得积分10
21秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570