Development and validation of a risk prediction model for the recurrence of foot ulcer with type 2 diabetes in China: A longitudinal cohort study based on a systematic review and meta‐analysis

医学 队列 中国 内科学 队列研究 荟萃分析 2型糖尿病 糖尿病 地理 内分泌学 考古
作者
Meijun Wang,Dong Chen,Hongmin Fu,Hongmei Xu,Shannon Lin,Tiantian Ge,Qiuyue Ren,Zhenqiang Song,Min Ding,Jun Chang,Tianci Fan,Qiuling Xing,Mingyan Sun,Xuemei Li,Liming Chen,Bai Chang
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:39 (4) 被引量:5
标识
DOI:10.1002/dmrr.3616
摘要

Abstract Aims To develop and validate a risk prediction model for Chinese patients with type 2 diabetes with the recurrence of diabetic foot ulcers (DFUs) based on a systematic review and meta‐analysis. Methods A prospective analysis was performed with 1333 participants and followed up for 60 months. Three models were analysed using a derived cohort. The risk factors were screened using meta‐analysis and logistic regression, and the missing variables were interpolated by multiple imputation. The internal validation was performed using the bootstrap procedure, and the validation cohort was applied to the external validation. The performance of the model was evaluated in the area under the discrimination Receiver Operating Characteristic Curve (ROC). Calibration and discrimination methods were used for the validation cohort. The variables were selected according to their clinical and statistical importance to construct the nomograms. Results Three models were developed and validated. Model 1 included seven social and clinical indicators like sex, diabetes mellitus duration, previous DFU, location of ulcer, smoking, history of amputation, and foot deformity. Model 2 included four more indicators besides those in Model 1, which were statin agents used, antiplatelet agents used, systolic blood pressure, and body mass index. Model 3 added further laboratory indicators to Model 2, such as LDL‐C, HbA1C, fibrinogen, and blood urea nitrogen. In the derivation cohort, 20.1% (206/1027) participants with DFU recurred as compared to the validation cohort, which was 38.2% (117/306). The areas under the curve in the derivation cohort for Models 1–3 were 0.781 (0.744–0.817), 0.843 (0.813–0.873), and 0.899 (0.876–0.922), respectively. The Youden indexes for Models 1–3 were 0.430, 0.559, and 0.653, respectively. Model 3 showed the highest sensitivity and specificity. All models performed well for both discrimination and calibration. Conclusions Models 1–2 were non‐invasive, which indicate their role in general screening for patients at a high risk of recurrence of DFU. However, Model 3 offers a more specific screening due to its best performance in predicting the risk of DFU recurrence amongst the three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
路路发布了新的文献求助10
1秒前
LL完成签到,获得积分10
2秒前
小悦悦完成签到 ,获得积分10
2秒前
2秒前
盐先生完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
酸奶烤着吃完成签到,获得积分10
3秒前
meng发布了新的文献求助30
3秒前
王翎力完成签到,获得积分10
4秒前
小龙虾大厨完成签到 ,获得积分10
4秒前
上官若男应助aaaa采纳,获得10
4秒前
风趣雅柏完成签到,获得积分10
4秒前
柴圆滚滚完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
yifan92完成签到,获得积分10
5秒前
打打应助CG2021采纳,获得10
6秒前
晓山青关注了科研通微信公众号
6秒前
用户5063899完成签到,获得积分10
6秒前
莫遥发布了新的文献求助10
6秒前
ergatoid完成签到,获得积分10
7秒前
wen发布了新的文献求助10
7秒前
墨之默完成签到,获得积分10
7秒前
彻彻完成签到,获得积分10
7秒前
菜系发布了新的文献求助10
8秒前
小马甲应助Alexander采纳,获得10
8秒前
8秒前
Chikit完成签到,获得积分10
8秒前
是鸢完成签到,获得积分10
8秒前
ZeYa完成签到,获得积分20
9秒前
柴圆滚滚发布了新的文献求助10
9秒前
9秒前
冥冥之极为昭昭应助伍佰采纳,获得10
10秒前
欣慰晓兰发布了新的文献求助10
10秒前
11秒前
小红完成签到,获得积分10
11秒前
赘婿应助难过小懒虫采纳,获得10
11秒前
ikun完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301