GNN-Based Hierarchical Annotation for Analog Circuits

网络列表 计算机科学 块(置换群论) 网络拓扑 电子设计自动化 图形 计算机工程 拓扑(电路) 理论计算机科学 电子工程 工程类 计算机硬件 数学 嵌入式系统 操作系统 几何学 电气工程
作者
Kishor Kunal,Tonmoy Dhar,Meghna Madhusudan,Jitesh Poojary,Arvind K. Sharma,Wenbin Xu,Steven M. Burns,Jiang Hu,Ramesh Harjani,Sachin S. Sapatnekar
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2801-2814 被引量:8
标识
DOI:10.1109/tcad.2023.3236269
摘要

Analog designs consist of multiple hierarchical functional blocks. Each block can be built using one of several design topologies, where the choice of topology is based on circuit performance requirements. A major challenge in automating analog design is in the identification of these functional blocks, which enables the creation of hierarchical netlist representations. This can facilitate a variety of design automation tasks, such as circuit layout optimization, because the layout is dictated by constraints at each level, such as symmetry requirements, that depend on the topology of the hierarchical block. Traditional graph-based methods find it hard to automatically identify the large number of structural variants of each block. To overcome this limitation, this article leverages recent advances in graph neural networks (GNNs). A variety of GNN strategies is used to identify netlist elements for circuit functional blocks at higher levels of the design hierarchy, where numerous design variants are possible. At lower levels of hierarchy, where the degrees of freedom in circuit topology is limited, structures are identified using graph-based algorithms. The proposed hierarchical recognition scheme enables the identification of layout constraints, such as symmetry and matching, which enable high-quality hierarchical layouts. This method is scalable across a wide range of analog designs. An experimental evaluation shows a high degree of accuracy over a wide range of analog designs, identifying functional blocks, such as low-noise amplifiers, operational transconductance amplifiers, mixers, oscillators, and band-pass filters, in larger circuits.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maple0808完成签到 ,获得积分10
刚刚
刚刚
lijf2024发布了新的文献求助10
刚刚
1秒前
1秒前
完美世界应助深情的代秋采纳,获得10
1秒前
土豆豆角完成签到 ,获得积分10
2秒前
小橙子完成签到,获得积分20
3秒前
海孩子发布了新的文献求助20
3秒前
Scherbatsky完成签到,获得积分10
3秒前
4秒前
4秒前
wangyr11发布了新的文献求助10
5秒前
阿利呀发布了新的文献求助20
5秒前
James发布了新的文献求助10
5秒前
7秒前
林懋发布了新的文献求助10
9秒前
9秒前
Corn_Dog完成签到,获得积分20
9秒前
10秒前
zzx发布了新的文献求助10
12秒前
15秒前
15秒前
15秒前
最卷的卷心菜完成签到,获得积分10
16秒前
tianmj发布了新的文献求助10
17秒前
科研通AI2S应助BJQ666采纳,获得10
17秒前
星星不说话完成签到,获得积分10
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
Orange应助帅气的以松采纳,获得20
19秒前
123完成签到,获得积分10
20秒前
21秒前
21秒前
星辰大海应助ssw采纳,获得10
22秒前
SHURT发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392384
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807166
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681513
邀请新用户注册赠送积分活动 674348