Prediction of Microvascular Invasion in Solitary AFP-Negative Hepatocellular Carcinoma ≤ 5 cm Using a Combination of Imaging Features and Quantitative Dual-Layer Spectral-Detector CT Parameters

肝细胞癌 接收机工作特性 医学 逻辑回归 预测值 核医学 曲线下面积 放射科 内科学
作者
Yongjian Zhu,Bing Feng,Wei Cai,Bingzhi Wang,Xuan Meng,Shuang Wang,Xiaohong Ma,Xinming Zhao
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S104-S116 被引量:12
标识
DOI:10.1016/j.acra.2023.02.015
摘要

AFP-negative hepatocellular carcinoma (AFPN-HCC) within 5 cm is a special subgroup of HCC. This study aimed to investigate the value of dual-layer spectral-detector CT (DLCT) and construct a scoring model based on imaging features as well as DLCT for predicting microvascular invasion (MVI) in AFPN-HCC within 5 cm.This retrospective study enrolled 104 HCC patients who underwent multiphase contrast-enhanced DLCT studies preoperatively. Combined radiological features (CR) and combined DLCT quantitative parameter (CDLCT) were constructed to predict MVI. Multivariable logistic regression was applied to identify potential predictors of MVI. Based on the coefficient of the regression model, a scoring model was developed. The predictive efficacy was assessed through ROC analysis.Microvascular invasion (MVI) was found in 28 (26.9%) AFPN-HCC patients. Among single parameters, the effective atomic number in arterial phase demonstrated the best predictive efficiency for MVI with an area under the curve (AUC) of 0.792. CR and CDLCT showed predictive performance with AUCs of 0.848 and 0.849, respectively. A risk score (RS) was calculated using the independent predictors of MVI as follows: RS = 2 × (mosaic architecture) + 2 × (corona enhancement) + 2 × (incomplete tumor capsule) + 2 × (2-trait predictor of venous invasion [TTPVI]) + 3 × (CDLCT > -1.229). Delong's test demonstrated this scoring system could significantly improve the AUC to 0.929 compared with CR (p = 0.016) and CDLCT (p = 0.034).The scoring model combining radiological features with DLCT provides a promising tool for predicting MVI in solitary AFPN-HCC within 5 cm preoperatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级铅笔发布了新的文献求助10
刚刚
1秒前
2秒前
一颗西米子完成签到,获得积分10
2秒前
yy发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
英勇的水云关注了科研通微信公众号
3秒前
5秒前
5秒前
5秒前
小冯完成签到 ,获得积分10
5秒前
孤巷的猫完成签到,获得积分10
6秒前
6秒前
6秒前
cell应助舒服的青寒采纳,获得10
6秒前
泠漓完成签到 ,获得积分10
6秒前
7秒前
许起眸完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
bai完成签到,获得积分10
7秒前
项人发布了新的文献求助10
8秒前
bkagyin应助Denmark采纳,获得10
8秒前
哈哈哈完成签到,获得积分10
8秒前
难过衬衫完成签到,获得积分10
9秒前
9秒前
舒适一笑完成签到,获得积分10
10秒前
10秒前
JamesPei应助SESAME复合体采纳,获得10
10秒前
10秒前
脑洞疼应助yzq采纳,获得10
10秒前
合适觅荷发布了新的文献求助10
10秒前
11秒前
liuqizong123完成签到,获得积分10
11秒前
老福贵儿完成签到,获得积分0
11秒前
燕尔蓝发布了新的文献求助10
11秒前
vie123完成签到 ,获得积分10
11秒前
江海小舟发布了新的文献求助10
11秒前
baby3480完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774487
求助须知:如何正确求助?哪些是违规求助? 5617838
关于积分的说明 15435874
捐赠科研通 4906905
什么是DOI,文献DOI怎么找? 2640476
邀请新用户注册赠送积分活动 1588298
关于科研通互助平台的介绍 1543281