Convolutional Neural Networks: A Promising Deep Learning Architecture for Biological Sequence Analysis

深度学习 人工智能 计算机科学 卷积神经网络 数据预处理 生物学数据 机器学习 建筑 预处理器 人工神经网络 生物信息学 生物 艺术 视觉艺术
作者
Chinju John,Jayakrushna Sahoo,Manu Madhavan,Oommen K. Mathew
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (7): 537-558 被引量:1
标识
DOI:10.2174/1574893618666230320103421
摘要

Abstract: The deep learning arena explores new dimensions once considered impossible to human intelligence. Recently, it has taken footsteps in the biological data world to deal with the diverse patterns of data derived from biomolecules. The convolutional neural networks, one of the most employed and persuasive deep learning architectures, can unravel the sequestered truths from these data, especially from the biological sequences. These neural network variants outperform traditional bioinformatics tools for the enduring tasks associated with such sequences. : This work imparts an exciting preface to the basics of convolutional neural network architecture and how it can be instrumented to deal with biological sequence analysis. : The approach followed in this paper can provide the reader with an enhanced view of convolutional neural networks, their basic working principles and how they apply to biological sequences. : A detailed view of critical steps involved in deep learning, starting from the data preprocessing, architecture designing, model training, hyperparameter tuning, and evaluation metrics, are portrayed. A comparative analysis of convolutional neural network architectures developed for protein family classification is also discussed. : This review contributes significantly to understanding the concepts behind deep learning architectures and their applications in biological sequence analysis. It can lift the barrier of limited knowledge to a great extent on the deep learning concepts and their implementation, especially for people who are dealing with pure biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
111发布了新的文献求助10
3秒前
3秒前
Suagy应助syt128采纳,获得10
4秒前
4秒前
仲夏发布了新的文献求助10
4秒前
lizzyming发布了新的文献求助10
5秒前
5秒前
lihuanmoon完成签到,获得积分10
5秒前
李xue发布了新的文献求助10
6秒前
风中淇完成签到,获得积分10
6秒前
joe应助大胆的锅包肉采纳,获得10
6秒前
科研通AI5应助研友_nvG5bZ采纳,获得10
6秒前
6秒前
7秒前
科研通AI5应助77采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助20
8秒前
8秒前
六六大顺完成签到,获得积分10
9秒前
华仔应助123采纳,获得10
9秒前
10秒前
幸运海星完成签到,获得积分10
10秒前
既晓发布了新的文献求助10
10秒前
维维逗奶发布了新的文献求助10
10秒前
10秒前
11秒前
宁柠咛发布了新的文献求助10
12秒前
小梨完成签到,获得积分10
12秒前
852应助花开富贵采纳,获得10
12秒前
咖啡不加糖完成签到,获得积分10
12秒前
饼饼发布了新的文献求助10
13秒前
无聊的爆米花完成签到,获得积分10
13秒前
fg2477完成签到,获得积分10
13秒前
承允发布了新的文献求助10
14秒前
幽默的幻珊完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602889
求助须知:如何正确求助?哪些是违规求助? 4011856
关于积分的说明 12420674
捐赠科研通 3692191
什么是DOI,文献DOI怎么找? 2035504
邀请新用户注册赠送积分活动 1068692
科研通“疑难数据库(出版商)”最低求助积分说明 953208