Convolutional Neural Networks: A Promising Deep Learning Architecture for Biological Sequence Analysis

深度学习 人工智能 计算机科学 卷积神经网络 数据预处理 生物学数据 机器学习 建筑 预处理器 人工神经网络 生物信息学 生物 艺术 视觉艺术
作者
Chinju John,Jayakrushna Sahoo,Manu Madhavan,Oommen K. Mathew
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (7): 537-558 被引量:1
标识
DOI:10.2174/1574893618666230320103421
摘要

Abstract: The deep learning arena explores new dimensions once considered impossible to human intelligence. Recently, it has taken footsteps in the biological data world to deal with the diverse patterns of data derived from biomolecules. The convolutional neural networks, one of the most employed and persuasive deep learning architectures, can unravel the sequestered truths from these data, especially from the biological sequences. These neural network variants outperform traditional bioinformatics tools for the enduring tasks associated with such sequences. : This work imparts an exciting preface to the basics of convolutional neural network architecture and how it can be instrumented to deal with biological sequence analysis. : The approach followed in this paper can provide the reader with an enhanced view of convolutional neural networks, their basic working principles and how they apply to biological sequences. : A detailed view of critical steps involved in deep learning, starting from the data preprocessing, architecture designing, model training, hyperparameter tuning, and evaluation metrics, are portrayed. A comparative analysis of convolutional neural network architectures developed for protein family classification is also discussed. : This review contributes significantly to understanding the concepts behind deep learning architectures and their applications in biological sequence analysis. It can lift the barrier of limited knowledge to a great extent on the deep learning concepts and their implementation, especially for people who are dealing with pure biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
英姑应助苏木采纳,获得10
2秒前
蓝胖子发布了新的文献求助20
2秒前
2秒前
wzl发布了新的文献求助10
3秒前
安详的冰棍完成签到,获得积分10
3秒前
归尘发布了新的文献求助10
3秒前
3秒前
小谢同学发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助巴拉采纳,获得10
4秒前
笃定发布了新的文献求助10
5秒前
5秒前
5秒前
ding应助Hilda007采纳,获得10
6秒前
迷人绿茶发布了新的文献求助10
6秒前
6秒前
jzyyn发布了新的文献求助10
7秒前
7秒前
桐桐应助AI imaging采纳,获得30
8秒前
大黄豆完成签到,获得积分10
8秒前
9秒前
9秒前
99999sun发布了新的文献求助10
9秒前
xiaolei完成签到 ,获得积分10
10秒前
11秒前
12秒前
妥妥酱发布了新的文献求助10
12秒前
Foch发布了新的文献求助10
12秒前
天造材发布了新的文献求助10
12秒前
NexusExplorer应助晨曦采纳,获得10
12秒前
13秒前
yao发布了新的文献求助10
13秒前
阿佑完成签到,获得积分10
13秒前
13秒前
14秒前
赘婿应助dan1029采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005534
求助须知:如何正确求助?哪些是违规求助? 4249119
关于积分的说明 13239987
捐赠科研通 4048734
什么是DOI,文献DOI怎么找? 2215036
邀请新用户注册赠送积分活动 1224973
关于科研通互助平台的介绍 1145351