亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Neural Networks: A Promising Deep Learning Architecture for Biological Sequence Analysis

深度学习 人工智能 计算机科学 卷积神经网络 数据预处理 生物学数据 机器学习 建筑 预处理器 人工神经网络 生物信息学 生物 艺术 视觉艺术
作者
Chinju John,Jayakrushna Sahoo,Manu Madhavan,Oommen K. Mathew
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (7): 537-558 被引量:1
标识
DOI:10.2174/1574893618666230320103421
摘要

Abstract: The deep learning arena explores new dimensions once considered impossible to human intelligence. Recently, it has taken footsteps in the biological data world to deal with the diverse patterns of data derived from biomolecules. The convolutional neural networks, one of the most employed and persuasive deep learning architectures, can unravel the sequestered truths from these data, especially from the biological sequences. These neural network variants outperform traditional bioinformatics tools for the enduring tasks associated with such sequences. : This work imparts an exciting preface to the basics of convolutional neural network architecture and how it can be instrumented to deal with biological sequence analysis. : The approach followed in this paper can provide the reader with an enhanced view of convolutional neural networks, their basic working principles and how they apply to biological sequences. : A detailed view of critical steps involved in deep learning, starting from the data preprocessing, architecture designing, model training, hyperparameter tuning, and evaluation metrics, are portrayed. A comparative analysis of convolutional neural network architectures developed for protein family classification is also discussed. : This review contributes significantly to understanding the concepts behind deep learning architectures and their applications in biological sequence analysis. It can lift the barrier of limited knowledge to a great extent on the deep learning concepts and their implementation, especially for people who are dealing with pure biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纳兰若微应助科研通管家采纳,获得10
10秒前
纳兰若微应助科研通管家采纳,获得10
10秒前
纳兰若微应助科研通管家采纳,获得10
10秒前
纳兰若微应助科研通管家采纳,获得10
11秒前
YifanWang应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
13秒前
55秒前
医生科学家完成签到 ,获得积分10
1分钟前
1分钟前
王座发布了新的文献求助10
1分钟前
王座完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
Wilson完成签到 ,获得积分10
2分钟前
Who发布了新的文献求助10
2分钟前
dolphin完成签到 ,获得积分0
2分钟前
璨澄完成签到 ,获得积分10
3分钟前
3分钟前
tylscxf完成签到,获得积分10
3分钟前
3分钟前
xxxxxxh发布了新的文献求助10
3分钟前
3分钟前
怕黑怜阳发布了新的文献求助10
3分钟前
abc完成签到 ,获得积分10
3分钟前
斯文败类应助暴力比巴波采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
怕黑怜阳完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗雅霜完成签到,获得积分20
4分钟前
4分钟前
Who发布了新的文献求助10
4分钟前
香蕉觅云应助开朗雅霜采纳,获得10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307419
求助须知:如何正确求助?哪些是违规求助? 2941050
关于积分的说明 8500270
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461