Neurophysiological biomarkers for depression classification: Utilizing microstate k-mers and a bag-of-words model

地方政府 正规化(语言学) 人工智能 计算机科学 模式识别(心理学) 机器学习 自然语言处理 心理学 脑电图 神经科学
作者
Dongdong Zhou,Xinyu Peng,Lin Zhao,Lingli Ma,Jinhui Hu,Zhenghao Jiang,Xiaoqing He,Wo Wang,R.-W. Chen,Li Kuang
出处
期刊:Journal of Psychiatric Research [Elsevier BV]
卷期号:165: 197-204 被引量:4
标识
DOI:10.1016/j.jpsychires.2023.07.021
摘要

Microstates are analogous to characters in a language, and short fragments consisting of several microstates (k-mers) are analogous to words. We aimed to investigate whether microstate k-mers could be used as neurophysiological biomarkers to differentiate between depressed patients and normal controls. We utilized a bag-of-words model to process microstate sequences, using k-mers with a k range of 1-10 as terms, and the term frequency (TF) with or without inverse-document-frequency (IDF) as features. We performed nested cross-validation on Dataset 1 (27 patients and 26 controls) and Dataset 2 (34 patients and 30 controls) separately and then trained on one dataset and tested on the other. The best area under the curve (AUC) of 81.5% was achieved for the model with L1 regularization using the TF of 4-mers as features in Dataset 1, and the best AUC of 88.9% was achieved for the model with L1 regularization using the TF of 9-mers as features in Dataset 2. When Dataset 1 was used as the training set, the best AUC of predicting Dataset 2 was 74.1% for the model with L2 regularization using the TF-IDF of 9-mers as features, while the best AUC of predicting Dataset 1 was 70.2% for the model with L1 regularization using the TF of 8-mers as features. Our study provided novel insights into the potential of microstate k-mers as neurophysiological biomarkers for individual-level classification of depression. These may facilitate further exploration of microstate sequences using natural language processing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助俊逸的翠容采纳,获得10
刚刚
2秒前
小红书求接接接接一篇完成签到,获得积分20
3秒前
科研通AI5应助超酷的柠檬采纳,获得10
6秒前
6秒前
风汐5423发布了新的文献求助10
7秒前
Lucas应助木木火正采纳,获得10
8秒前
白宇完成签到 ,获得积分10
9秒前
人各有痣完成签到,获得积分10
9秒前
落红雨完成签到 ,获得积分10
12秒前
汉堡包应助火星上的沛春采纳,获得10
13秒前
fpsfuxi完成签到,获得积分10
14秒前
HEIKU应助waterimagic2采纳,获得10
17秒前
AR发布了新的文献求助10
19秒前
Lore完成签到 ,获得积分10
21秒前
21秒前
Huyang应助dophin采纳,获得30
22秒前
乐观谷南完成签到,获得积分10
22秒前
22秒前
午午午午完成签到 ,获得积分10
25秒前
26秒前
科研通AI5应助乐观谷南采纳,获得10
26秒前
26秒前
仁爱仙人掌完成签到,获得积分10
26秒前
在水一方应助在水一方采纳,获得10
27秒前
28秒前
29秒前
烟花应助司徒骁采纳,获得10
29秒前
传奇3应助kyyy采纳,获得10
29秒前
30秒前
小鱼完成签到,获得积分10
30秒前
30秒前
30秒前
HM1204++发布了新的文献求助30
33秒前
nini完成签到 ,获得积分10
34秒前
念姬发布了新的文献求助10
35秒前
mm完成签到,获得积分10
35秒前
莫言单名一字飞完成签到,获得积分10
36秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434