A Heuristic-Concatenated Feature Classification Algorithm (H-CFCA) for autism and epileptic seizure detection

计算机科学 支持向量机 模式识别(心理学) 人工智能 降维 特征提取 分类器(UML) 启发式 脑电图 精神科 心理学
作者
S. Sivasaravana Babu,V. S. Prabhu,V. Parthasarathy,G. Saravana Kumar
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105245-105245
标识
DOI:10.1016/j.bspc.2023.105245
摘要

The objective is to implement a comprehensive Heuristic-CFCA (H-CFCA) a feature classification system using Machine Learning and Deep Learning principles for detecting Autism and Epileptic Seizures with EEG data. This involves a sequential integration of functional blocks that includes EEG Pre-Processing, Dimensionality Reduction, Feature Extraction, and a Concatenated Feature Classification Scheme (CFCA). The methodology involves db4 Wavelet-based decomposition (WD) for pre-processing the EEG into five frequency bands, followed by Singular Value Decomposition (SVD) for dimensionality reduction. Subsequently, Heuristic Independent Component Analysis (H-ICA) is applied to extract Independent Components (ICs). These ICs are fed to H-CFCA comprises of Support Vector Machine (SVM) as first stage classifier, followed by a Bi-Stack Long Short-Term Memory (BiS-LSTM) as second stage classifier to detect the presence of autism and epileptic seizure. The evaluation of the proposed algorithm achieves an accuracy of 99.51 % and a Sensitivity of 98.86 % and F1 score of 99.32 % The article realizes an effective and feasible H-CFCA, with an ability to handle large size EEG datasets and achieves reduced computational complexity, and improved feature classification. Comparative analysis shows that H-CFCA achieves the highest accuracy and sensitivity compared to existing ML/DL-based algorithms. The EEG feature classification system significantly advances diagnostic accuracy, improves social well-being by enabling personalized interventions, and drives technological innovation in healthcare by leveraging advanced classification methods and data analysis techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随意完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
沉默的半凡完成签到,获得积分10
2秒前
孔师发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
123发布了新的文献求助10
6秒前
keyanbrant完成签到 ,获得积分10
7秒前
楼小柚完成签到,获得积分10
7秒前
Lwssss发布了新的文献求助10
7秒前
小二郎应助duonicola采纳,获得10
7秒前
闪闪鬼神发布了新的文献求助10
7秒前
ninini完成签到,获得积分10
8秒前
全名发布了新的文献求助10
8秒前
8秒前
CipherSage应助xiaoxiao采纳,获得10
9秒前
Bigweenine发布了新的文献求助10
9秒前
岑中归月发布了新的文献求助10
9秒前
223344发布了新的文献求助10
10秒前
10秒前
zpf完成签到,获得积分20
10秒前
11秒前
大模型应助李圳铭采纳,获得10
11秒前
情怀应助Lwssss采纳,获得10
12秒前
仁爱的水儿完成签到,获得积分10
12秒前
12秒前
13秒前
Lucas应助故意的问丝采纳,获得10
13秒前
半烟完成签到 ,获得积分10
14秒前
14秒前
Ryan发布了新的文献求助10
15秒前
zpf发布了新的文献求助30
16秒前
16秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443976
求助须知:如何正确求助?哪些是违规求助? 3040026
关于积分的说明 8979713
捐赠科研通 2728615
什么是DOI,文献DOI怎么找? 1496604
科研通“疑难数据库(出版商)”最低求助积分说明 691789
邀请新用户注册赠送积分活动 689341