Tuning wettability of nickel-based electrode by micro-nano surface structure to boost OER catalysis

过电位 塔菲尔方程 析氧 材料科学 催化作用 化学工程 纳米- 电极 润湿 氧化钴 纳米技术 制氢 电解水 氧化物 电解 化学 冶金 复合材料 电化学 电解质 物理化学 工程类 生物化学
作者
Wei Jiang,Xiaoqing Huang,Wentao Ke,Liangcheng Sheng,Junjie Li,Fankai Zhu,Wenwei Cheng,Zhang Zu-fang,Yuanxia Lao,Yuanlong Chen
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:965: 171367-171367 被引量:9
标识
DOI:10.1016/j.jallcom.2023.171367
摘要

Electrolysis of water is a green and environmentally friendly hydrogen production method, but its low oxygen evolution reaction (OER) efficiency hinders its large-scale application. A major strategy to improve the catalytic performance of OER is constructing the micro-nano structure on the surface of the catalyst. However, the exact effects of micro-nano surface structure, such as roughness, morphology and hierarchical structure on the catalytic performance have not been systematically studied. Herein, Nickel-Cobalt-Cerium Oxide (Ni-Co-CeO2) catalytic electrodes with the different micro-nano surface structures are fabricated by magnetic field-induced scanning electrodeposition. The effects of the micro-nano surface structure on catalytic performance are investigated. The results show that the micro-nano surface structure of Ni-Co-CeO2 catalytic electrodes has a great influence on the wetting state, which may lead to the Wenzel-Cassie transition, resulting in severe degradation of catalytic performance. By optimizing the micro-nano surface structure, the Ni-Co-CeO2 catalytic electrode has the best catalytic performance with the overpotential of 309 mV for OER to achieve the current density of 10 mA/cm2 and the corresponding Tafel slopes of 39.52 mV/dec. The study also demonstrates that the magnetic field-induced scanning electrodeposition is an efficient and simple method for tuning the micro-nano surface structure of electrodes to boost the OER efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
SciGPT应助Shuyinganxiang采纳,获得10
2秒前
2秒前
hahaha完成签到,获得积分20
2秒前
科研通AI6应助123采纳,获得10
2秒前
3秒前
3秒前
星辰大海应助v啦啦啦啦采纳,获得10
3秒前
4秒前
4秒前
Lucas应助6S6采纳,获得10
4秒前
gmat50完成签到 ,获得积分10
4秒前
5秒前
Aurora.H发布了新的文献求助10
5秒前
hcmsaobang2001完成签到,获得积分10
6秒前
英俊的铭应助赵十一采纳,获得10
6秒前
HY发布了新的文献求助30
6秒前
ly发布了新的文献求助10
7秒前
7秒前
36456657应助kk采纳,获得10
7秒前
yuxuan发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
乐乐应助Surge采纳,获得10
9秒前
9秒前
CipherSage应助水123采纳,获得10
9秒前
随便起个吧完成签到 ,获得积分10
9秒前
May发布了新的文献求助10
9秒前
夜寻发布了新的文献求助10
10秒前
1111111完成签到,获得积分10
10秒前
10秒前
夏墨发布了新的文献求助10
10秒前
10秒前
10秒前
有魅力的雨梅完成签到,获得积分10
11秒前
Ava应助龙行天下采纳,获得10
11秒前
策略完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386