Count-Based Morgan Fingerprint: A More Efficient and Interpretable Molecular Representation in Developing Machine Learning-Based Predictive Regression Models for Water Contaminants’ Activities and Properties

指纹(计算) 人工智能 代表(政治) 回归分析 回归 计算机科学 机器学习 数学 统计 政治学 政治 法学
作者
Shifa Zhong,Xiaohong Guan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18193-18202 被引量:41
标识
DOI:10.1021/acs.est.3c02198
摘要

In this study, we introduce the count-based Morgan fingerprint (C-MF) to represent chemical structures of contaminants and develop machine learning (ML)-based predictive models for their activities and properties. Compared with the binary Morgan fingerprint (B-MF), C-MF not only qualifies the presence or absence of an atom group but also quantifies its counts in a molecule. We employ six different ML algorithms (ridge regression, SVM, KNN, RF, XGBoost, and CatBoost) to develop models on 10 contaminant-related data sets based on C-MF and B-MF to compare them in terms of the model's predictive performance, interpretation, and applicability domain (AD). Our results show that C-MF outperforms B-MF in nine of 10 data sets in terms of model predictive performance. The advantage of C-MF over B-MF is dependent on the ML algorithm, and the performance enhancements are proportional to the difference in the chemical diversity of data sets calculated by B-MF and C-MF. Model interpretation results show that the C-MF-based model can elucidate the effect of atom group counts on the target and have a wider range of SHAP values. AD analysis shows that C-MF-based models have an AD similar to that of B-MF-based ones. Finally, we developed a "ContaminaNET" platform to deploy these C-MF-based models for free use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
称心太阳发布了新的文献求助10
1秒前
Z不错发布了新的文献求助10
1秒前
1秒前
喜静完成签到 ,获得积分10
1秒前
小猫爬楼梯完成签到,获得积分10
2秒前
开朗道天完成签到,获得积分10
2秒前
2秒前
4秒前
shi hui发布了新的文献求助10
5秒前
所所应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
敬老院N号应助科研通管家采纳,获得30
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
vica发布了新的文献求助10
7秒前
阿拉斯加完成签到,获得积分10
8秒前
8秒前
9秒前
tkx是流氓兔完成签到,获得积分10
9秒前
9秒前
搞甚发布了新的文献求助10
9秒前
mhl11应助belinazhang采纳,获得10
10秒前
FancyShi完成签到,获得积分10
12秒前
angchiul完成签到,获得积分10
12秒前
思源应助hhhhhhmt采纳,获得10
12秒前
一条喵完成签到,获得积分10
12秒前
13秒前
顺心凝天应助小王采纳,获得30
13秒前
hode发布了新的文献求助10
13秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351299
求助须知:如何正确求助?哪些是违规求助? 2976784
关于积分的说明 8676604
捐赠科研通 2657950
什么是DOI,文献DOI怎么找? 1455336
科研通“疑难数据库(出版商)”最低求助积分说明 673832
邀请新用户注册赠送积分活动 664315