A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data

比例危险模型 组学 结直肠癌 生存分析 癌症 生物信息学 人工智能 肿瘤科 机器学习 计算生物学 医学 计算机科学 生物 内科学
作者
Siamak Salimy,Hossein Lanjanian,Karim Abbasi,Mahdieh Salimi,Ali Najafi,Leili Tapak,Ali Masoudi‐Nejad
出处
期刊:Heliyon [Elsevier]
卷期号:9 (7): e17653-e17653 被引量:11
标识
DOI:10.1016/j.heliyon.2023.e17653
摘要

Precise prognostic classification of patients and identifying survival subgroups and their associated genes can be important clinical references when designing treatment strategies for cancer patients. Multi-omics and data integration techniques are powerful tools to achieve this goal. This study aimed to introduce a machine learning method to integrate three types of biological data, and investigate the performance of two other methods, in identifying the survival dependency of patients. The data included TCGA RNA-seq gene expression, DNA methylation, and clinical data from 368 patients with colon cancer also we use an independent external validation data set, containing 232 samples. Three methods including, hyper-parameter optimized autoencoders (HPOAE), normal autoencoder, and penalized principal component analysis (PPCA) were used for simultaneous data integration and estimation under a COX hazards model. The HPOAE was thought to outperform other methods. The HPOAE had the Log Rank Mantel-Cox value of 14.27 ± 2, and a Breslow-Generalized Wilcoxon value of 13.13 ± 1. Ten miRNA, 11 methylated genes, and 28 mRNA all by (importance of marginal cutoff > 0.95) were identified. The study demonstrated that hsa-miR-485-5p targets both ZMYM1 and tp53, the latter of which has been previously associated with cancer in numerous studies. Furthermore, compared to other methods, the HPOAE exhibited a greater capacity for identifying survival subgroups and the genes associated with them in patients with colon cancer. However, all of the results were obtained by computational methods, and clinical and experimental studies are needed to validate these results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
忆楠发布了新的文献求助10
1秒前
丘比特应助苏苏阿苏采纳,获得10
1秒前
思源应助沉静妙之采纳,获得10
1秒前
无名老大应助shann采纳,获得100
2秒前
加油发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助英勇夏旋采纳,获得10
5秒前
共享精神应助恋空采纳,获得10
6秒前
hsj发布了新的文献求助10
6秒前
7秒前
南霖完成签到,获得积分10
7秒前
Lucas应助Jimmybythebay采纳,获得10
8秒前
8秒前
小肥脸完成签到 ,获得积分10
10秒前
10秒前
121231233完成签到,获得积分10
10秒前
冷傲魔镜发布了新的文献求助10
11秒前
Lucas应助等待的风华采纳,获得10
12秒前
12秒前
12秒前
沉静妙之发布了新的文献求助10
13秒前
liul发布了新的文献求助10
13秒前
14秒前
14秒前
Yuri完成签到,获得积分10
14秒前
科目三应助无限的含羞草采纳,获得10
14秒前
FashionBoy应助额我认为采纳,获得10
15秒前
高丰发布了新的文献求助10
16秒前
叶95发布了新的文献求助10
16秒前
17秒前
hhw发布了新的文献求助10
17秒前
17秒前
JamesPei应助冷傲魔镜采纳,获得10
19秒前
19秒前
20秒前
20秒前
脑洞疼应助恋空采纳,获得10
21秒前
大模型应助choshuenco采纳,获得10
21秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334609
求助须知:如何正确求助?哪些是违规求助? 2963868
关于积分的说明 8611689
捐赠科研通 2642793
什么是DOI,文献DOI怎么找? 1446965
科研通“疑难数据库(出版商)”最低求助积分说明 670499
邀请新用户注册赠送积分活动 658693