已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data

比例危险模型 组学 结直肠癌 生存分析 癌症 生物信息学 人工智能 肿瘤科 机器学习 计算生物学 医学 计算机科学 生物 内科学
作者
Siamak Salimy,Hossein Lanjanian,Karim Abbasi,Mahdieh Salimi,Ali Najafi,Leili Tapak,Ali Masoudi‐Nejad
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (7): e17653-e17653 被引量:11
标识
DOI:10.1016/j.heliyon.2023.e17653
摘要

Precise prognostic classification of patients and identifying survival subgroups and their associated genes can be important clinical references when designing treatment strategies for cancer patients. Multi-omics and data integration techniques are powerful tools to achieve this goal. This study aimed to introduce a machine learning method to integrate three types of biological data, and investigate the performance of two other methods, in identifying the survival dependency of patients. The data included TCGA RNA-seq gene expression, DNA methylation, and clinical data from 368 patients with colon cancer also we use an independent external validation data set, containing 232 samples. Three methods including, hyper-parameter optimized autoencoders (HPOAE), normal autoencoder, and penalized principal component analysis (PPCA) were used for simultaneous data integration and estimation under a COX hazards model. The HPOAE was thought to outperform other methods. The HPOAE had the Log Rank Mantel-Cox value of 14.27 ± 2, and a Breslow-Generalized Wilcoxon value of 13.13 ± 1. Ten miRNA, 11 methylated genes, and 28 mRNA all by (importance of marginal cutoff > 0.95) were identified. The study demonstrated that hsa-miR-485-5p targets both ZMYM1 and tp53, the latter of which has been previously associated with cancer in numerous studies. Furthermore, compared to other methods, the HPOAE exhibited a greater capacity for identifying survival subgroups and the genes associated with them in patients with colon cancer. However, all of the results were obtained by computational methods, and clinical and experimental studies are needed to validate these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助Mayday采纳,获得10
1秒前
1秒前
少年完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
情怀应助苗条寻雪采纳,获得30
6秒前
这斯和休完成签到,获得积分10
8秒前
安详向薇完成签到,获得积分10
11秒前
感动笑完成签到,获得积分10
14秒前
干净的时光完成签到 ,获得积分10
16秒前
云祱完成签到,获得积分10
16秒前
21秒前
kk完成签到 ,获得积分10
23秒前
香蕉觅云应助dandan采纳,获得10
23秒前
26秒前
26秒前
27秒前
斯文钢笔完成签到 ,获得积分10
28秒前
B站萧亚轩发布了新的文献求助10
28秒前
cayde发布了新的文献求助10
29秒前
29秒前
余南发布了新的文献求助10
29秒前
30秒前
华仔应助虚幻踏歌采纳,获得10
31秒前
32秒前
35秒前
Wei发布了新的文献求助10
35秒前
英俊绿柏应助荷子采纳,获得10
37秒前
38秒前
39秒前
lumi完成签到,获得积分10
40秒前
41秒前
8R60d8应助荔枝采纳,获得10
42秒前
Mayday发布了新的文献求助10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210