A Lightweight Framework for Fast Trajectory Simplification

计算机科学 弹道 背景(考古学) 人工智能 图形 可微函数 集合(抽象数据类型) 数据挖掘 机器学习 理论计算机科学 数学 古生物学 数学分析 物理 天文 生物 程序设计语言
作者
Ziquan Fang,Changhao He,Lu Chen,Danlei Hu,Qichen Sun,Linsen Li,Yunjun Gao
标识
DOI:10.1109/icde55515.2023.00184
摘要

The ubiquitous GPS sensors collect massive trajectory data from moving objects, which is useful in data mining applications. However, trajectory data is enormous in volume, and thus, directly storing and processing the raw data is expensive. Using trajectory simplification, a trajectory can be reduced to a set of continuous line segments with acceptable data loss, which is an efficient method. Although many algorithms are proposed, they still suffer from the following issues including (i) non-data driven capability as most studies rely on human-crafted rules or pre-defined parameters, (ii) bound with error measures that yield high computational cost, and (iii) focusing only on the local information preservation in trajectories, but failing in capturing the global mobility patterns for trajectory compression.To address the above issues, we propose a Seq2Seq2Seq framework, abbreviated S3, which consists of two chained Seq2Seq. With differentiable reconstruction learning, S3 enables self-supervised trajectory simplification in a lightweight manner. Besides, we deploy S3 over the graph neural architecture to capture the context-aware mobility patterns and enhance the representation paradigm of trajectories with geographical semantics, where a context-aware distance measure is designed for quality evaluation. An online extension of S3 is also developed to enable streaming trajectory simplifications. Finally, extensive experiments using two real-world datasets in both offline and online scenarios show that S3 achieves much higher efficiency (e.g., it achieves up to one order of magnitude speed-up gains) and comparable compression quality, compared with both non-learning and state-of-the-art learning-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖糖发布了新的文献求助10
刚刚
刚刚
真洋子哈完成签到,获得积分10
刚刚
AAA发布了新的文献求助10
2秒前
思源应助风萧萧采纳,获得10
3秒前
大力的洪纲完成签到,获得积分10
3秒前
Saw完成签到,获得积分10
3秒前
3秒前
Canma完成签到 ,获得积分10
3秒前
xj_yjl完成签到,获得积分10
4秒前
Mr.egg发布了新的文献求助10
4秒前
5秒前
趴趴熊完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
田様应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
蛋卷儿应助MPC采纳,获得10
6秒前
随机昵称应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774200
求助须知:如何正确求助?哪些是违规求助? 3319877
关于积分的说明 10197394
捐赠科研通 3034433
什么是DOI,文献DOI怎么找? 1665030
邀请新用户注册赠送积分活动 796533
科研通“疑难数据库(出版商)”最低求助积分说明 757510