Investigating the aerodynamic drag and noise characteristics of a standard squareback vehicle with inclined side-view mirror configurations using a hybrid computational aeroacoustics (CAA) approach

物理 空气声学 阻力系数 空气动力学 阻力 噪音(视频) 声学 计算空气声学 旋涡脱落 攻角 寄生阻力 光学 机械 航空航天工程 声压 计算机科学 湍流 工程类 人工智能 雷诺数 图像(数学)
作者
Kushal Kumar Chode,Harish Viswanathan,K. Chow,Hauke Reese
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:7
标识
DOI:10.1063/5.0156111
摘要

This study investigates the aerodynamic noise generated and radiated from a standard squareback body with various inclined side-view mirrors using a hybrid computational aeroacoustics method based on a stress-blended eddy simulation coupled with the Ffowcs-Williams and Hawkings acoustic analogy. The results indicate that in the absence of the side-view mirror, the idealized A-pillar is identified as the subsequent major contributor to the overall noise radiated from the vehicle body, and the coefficient of drag decreases by approximately 13.3% despite a minimal change in the projected frontal area. However, the behavior of the drag coefficient becomes nonlinear and highly dependent on the complex flow features, including the vortex shedding patterns and the interaction between the flow and side surface of the body, with increasing mirror inclination angle. In contrast, the radiated noise exhibits a constant decrease as the mirror inclination angle (θ) increases to 32°. Additionally, when the side-view mirror is considered as the sole source, the noise radiated is minimal for an inclination angle of 16°, and a further increase in inclination angle has no significant reduction on the noise radiated but alters the overall drag coefficient of the vehicle. These findings have practical implications for the design of side-view mirrors to reduce aerodynamic noise in automotive applications and highlight the complex tradeoffs between noise reduction and changes in the drag coefficient that must be considered in such designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QinMengyao发布了新的文献求助10
1秒前
李繁蕊发布了新的文献求助10
2秒前
眼睛大的鑫磊完成签到,获得积分10
2秒前
雪白红紫完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
Fareth发布了新的文献求助10
4秒前
Air云完成签到,获得积分10
4秒前
PakhoPHD完成签到 ,获得积分10
4秒前
玉麒麟完成签到,获得积分0
5秒前
Angela完成签到,获得积分10
5秒前
希望天下0贩的0应助小吴采纳,获得10
5秒前
5秒前
lilac应助苹果煎饼采纳,获得10
6秒前
大模型应助百宝采纳,获得10
6秒前
怕黑砖头完成签到,获得积分10
7秒前
8秒前
8秒前
花玥鹿完成签到,获得积分10
8秒前
cybbbbbb完成签到,获得积分10
8秒前
咳咳完成签到,获得积分10
8秒前
9秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
9秒前
9秒前
Fareth完成签到,获得积分10
9秒前
领导范儿应助故意的绿竹采纳,获得10
9秒前
9秒前
复杂谷蓝完成签到 ,获得积分10
9秒前
10秒前
迟大猫应助于某人采纳,获得10
10秒前
qingkong发布了新的文献求助10
11秒前
11秒前
11秒前
细腻白柏完成签到,获得积分10
11秒前
11秒前
麦满分完成签到,获得积分10
12秒前
长度2到发布了新的文献求助10
12秒前
Alicia完成签到,获得积分10
13秒前
西瓜大虫完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740