Experimentally manipulating mediating processes: Why and how to examine mediation using statistical moderation analyses

适度 调解 心理学 因果推理 调解 社会心理学 统计假设检验 过程(计算) 因果模型 研究设计 控制(管理) 因果链 认知心理学 计算机科学 计量经济学 统计 人工智能 数学 政治学 法学 操作系统
作者
Xiaoyu Ge
出处
期刊:Journal of Experimental Social Psychology [Elsevier]
卷期号:109: 104507-104507 被引量:38
标识
DOI:10.1016/j.jesp.2023.104507
摘要

Statistical mediation analysis is commonly used to examine mediation, but it is not the default paradigm; researchers also test for mediation through experimental mediation analysis, such as the two randomized experiments design, the experimental-causal-chain design, the moderation-of-process design, and the parallel design, all of which differ considerably in terms of procedures and requirements. Which requirements are genuinely necessary, and which are not? This paper compares the effectiveness of these research designs in examining mediation. Three constitutive requirements for supporting a mediational hypothesis were identified: (A) a significant interaction effect of the independent variable (X) and the manipulation of the proposed mediating process (M) on the dependent variable (Y); (B) a significant effect of X on the measured M within the control group whose M is not manipulated and can function naturally; and (C) a significant effect of the manipulation on the measured M. Using these criteria, existing designs all have drawbacks, so this paper proposes a manipulation-of-mediation-as-a-moderator (MMM) design to fulfill all three requirements. MMM provides strong evidence for the causal inference M → Y, avoids false alarms in many cases, and provides direct evidence for the relationships between X and M and between manipulated M and measured M. The paper presents a step-by-step example of MMM for interested practitioners. In its discussion of the relationships among X-caused M, manipulated M, and measured M and the distinction between mediation and moderation, this paper enriches the understanding of the nature of mediation analyses in psychology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬灵发布了新的文献求助10
2秒前
调皮绿蕊完成签到,获得积分10
2秒前
2秒前
3秒前
沉静傥完成签到,获得积分10
4秒前
cloud发布了新的文献求助10
4秒前
懒洋洋发布了新的文献求助10
4秒前
5秒前
王晗关注了科研通微信公众号
5秒前
充电宝应助姜且采纳,获得10
5秒前
可爱馒头发布了新的文献求助10
6秒前
7秒前
桃子不是涛完成签到,获得积分10
9秒前
10秒前
结实青文完成签到 ,获得积分10
10秒前
11秒前
淳之风完成签到,获得积分10
11秒前
小雒雒完成签到,获得积分10
12秒前
小木完成签到,获得积分10
13秒前
14秒前
科研通AI6应助顺利兰采纳,获得10
14秒前
15秒前
15秒前
woxbin发布了新的文献求助10
16秒前
曾经的初雪完成签到 ,获得积分10
16秒前
16秒前
17秒前
李健应助清江鱼采纳,获得10
17秒前
老实的大白菜真实的钥匙完成签到,获得积分10
17秒前
慕念完成签到,获得积分10
17秒前
JamesPei应助会撒娇的金毛采纳,获得30
18秒前
积极洋葱发布了新的文献求助10
18秒前
迟迟发布了新的文献求助10
18秒前
汉堡包应助song采纳,获得10
19秒前
19秒前
23秒前
24秒前
luxx发布了新的文献求助10
25秒前
Jeff关注了科研通微信公众号
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989