兴奋剂
发光
材料科学
荧光粉
掺杂剂
激发态
猝灭(荧光)
带隙
氮化物
光电子学
化学物理
纳米技术
原子物理学
化学
光学
荧光
物理
图层(电子)
作者
Yujuan Zhou,Ying Xiong,Jianwen Zhang,Meijuan Li,Zhifeng Huang
标识
DOI:10.1016/j.apradiso.2023.110923
摘要
Currently, researchers have been able to manipulate the luminescent properties and thermal stability of nitride red phosphor Sr2Si5N8:Eu2+ through rare earth doping. However, there is limited research on the doping of its framework. This work investigated the crystal structure, band structure, and luminescence properties of Sr2Si5N8: Eu2+ and its framework doped systems. We selected B, C, and O as doping elements because the corresponding formation energies of these elements doped structures are relatively low. Then, we calculated the band structures of various doped systems in both the ground and excited states. This analysis aimed to investigate their luminescent properties using the configuration coordinate diagram. The results show that doping with B, C, or O has minimal effect on the emission peak width. The thermal quenching resistance of the B- or C-doped system was enhanced due to the increased energy differences between the 5d energy level of the electron-filled state in the excited state and the bottom of the conduction band, compared to the undoped system. However, the thermal quenching resistance of the O-doped system varies depending on the position of the silicon vacancy. The work indicates that framework doping can also improve the thermal quenching resistance of phosphors besides rare earth ions doping.
科研通智能强力驱动
Strongly Powered by AbleSci AI