丝素
生物医学工程
材料科学
药品
药物输送
乙醇酸
可生物降解聚合物
微球
化学工程
生物物理学
纳米技术
聚合物
乳酸
药理学
复合材料
丝绸
医学
工程类
生物
细菌
遗传学
作者
Yi Zhang,Lu Wang,Bin Zhao
出处
期刊:Bio-medical Materials and Engineering
[IOS Press]
日期:2023-07-04
卷期号:34 (6): 503-523
被引量:2
摘要
BACKGROUND: Advances in bone tissue engineering offer novel options for the regeneration of bone tissue. In the current clinical treatment, the method of accelerating bone tissue regeneration rate by promoting early angiogenesis has been widely accepted. OBJECTIVE: This study aimed to develop a long-acting slow-release system using the pro-angiogenic drug tetramethylpyrazine (TMPZ) and pro-osteogenic drug icariin (ICA), which can be administered locally to achieve the sequential release of TMPZ and ICA for better clinically efficiency in the treatment of bone defects. METHODS: This study aimed to prepare microspheres with a core-shell structure using two polymers, poly lactic-co-glycolic acid and silk fibroin, by coaxial electrostatic spraying. Based on the therapeutic model for bone defects, the pro-angiogenic drug TMPZ and pro-osteogenic drug ICA were encapsulated in the shell and core layers of the microspheres, respectively. Subsequently, TMPZ and ICA were released sequentially to promote early angiogenesis and late osteogenesis, respectively, at the site of the bone defect. The optimal preparation parameters for preparing the drug-loaded microspheres were identified using the univariate controlled variable method. Additionally, microsphere morphology and core-shell structure, such as physical properties, drug-loading properties, in vitro degradation and drug release patterns, were characterised using scanning electron microscope and laser scanning confocal microscopy. RESULTS: The microspheres prepared in this study were well-defined and had a core-shell structure. The hydrophilicity of the drug-loaded microspheres changed compared to the no-load microspheres. Furthermore, in vitro results indicated that the drug-loaded microspheres with high encapsulation and loading efficiencies exhibited good biodegradability and cytocompatibility, slowly releasing the drug for up to three months. CONCLUSION: The development of the drug delivery system with a dual-step release mechanism has potential clinical applications and implications in the treatment of bone defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI