Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 程序设计语言 系统工程 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chompa完成签到,获得积分10
刚刚
小黄完成签到,获得积分10
刚刚
AAAAA应助阿鑫采纳,获得10
刚刚
波西米亚完成签到,获得积分10
刚刚
刚刚
打打应助Ryan采纳,获得10
1秒前
程程程完成签到,获得积分10
1秒前
雪影完成签到 ,获得积分10
1秒前
tdtk发布了新的文献求助10
1秒前
2秒前
2秒前
萍水相逢发布了新的文献求助10
2秒前
sikai完成签到,获得积分20
2秒前
Lee完成签到 ,获得积分10
3秒前
3242晶完成签到,获得积分10
3秒前
卷毛完成签到,获得积分10
3秒前
Akim应助jie采纳,获得10
3秒前
make发布了新的文献求助10
3秒前
菠菜发布了新的文献求助30
3秒前
西西发布了新的文献求助10
3秒前
光亮熠彤完成签到 ,获得积分20
4秒前
4秒前
张昭蓉完成签到,获得积分10
4秒前
哈噗咻发布了新的文献求助10
5秒前
pengpeng发布了新的文献求助10
5秒前
宁作我完成签到 ,获得积分10
5秒前
张雅露完成签到,获得积分10
5秒前
Anoxia完成签到,获得积分10
5秒前
平淡思雁发布了新的文献求助10
5秒前
kong应助遮宁采纳,获得10
6秒前
LIUYC完成签到,获得积分10
6秒前
张姐完成签到,获得积分10
6秒前
shouyu29发布了新的文献求助10
7秒前
7秒前
sikai发布了新的文献求助10
7秒前
小鱼完成签到,获得积分10
7秒前
赘婿应助从容芸采纳,获得10
7秒前
ZHUYANYAN完成签到,获得积分10
7秒前
wanci应助Mike14采纳,获得10
7秒前
lu完成签到,获得积分20
7秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885