Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 程序设计语言 系统工程 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CMUSK完成签到,获得积分10
1秒前
1秒前
我爱吃菜完成签到 ,获得积分10
5秒前
SisiZheng完成签到,获得积分20
5秒前
收费完成签到 ,获得积分10
6秒前
hwl26完成签到,获得积分10
7秒前
雪花完成签到 ,获得积分10
8秒前
追风筝的少女完成签到 ,获得积分10
12秒前
彩色的过客完成签到 ,获得积分10
15秒前
饱满芷卉完成签到,获得积分10
15秒前
Doctor.TANG完成签到 ,获得积分10
17秒前
房房不慌完成签到 ,获得积分10
19秒前
陙兂完成签到,获得积分10
19秒前
Hellowa完成签到,获得积分10
20秒前
梦游天吟留别完成签到,获得积分10
20秒前
22秒前
柚C美式完成签到 ,获得积分10
22秒前
25秒前
xiuxiu125发布了新的文献求助10
27秒前
sdbz001完成签到,获得积分0
30秒前
ash完成签到,获得积分10
33秒前
37秒前
彭于晏应助科研通管家采纳,获得10
40秒前
FashionBoy应助科研通管家采纳,获得10
40秒前
Smar_zcl应助科研通管家采纳,获得20
40秒前
Smar_zcl应助科研通管家采纳,获得60
40秒前
laber应助科研通管家采纳,获得50
40秒前
huco完成签到,获得积分10
40秒前
Eileen完成签到 ,获得积分10
43秒前
LALALALA完成签到,获得积分10
47秒前
花椒泡茶完成签到 ,获得积分10
47秒前
xue完成签到 ,获得积分10
48秒前
乌云乌云快走开完成签到,获得积分10
48秒前
登登完成签到,获得积分10
51秒前
SC完成签到 ,获得积分10
52秒前
Carrie完成签到,获得积分10
53秒前
2025顺顺利利完成签到 ,获得积分10
55秒前
机智的阿振完成签到,获得积分10
57秒前
kehe完成签到 ,获得积分10
58秒前
大大大忽悠完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293935
求助须知:如何正确求助?哪些是违规求助? 4443973
关于积分的说明 13831812
捐赠科研通 4327924
什么是DOI,文献DOI怎么找? 2375804
邀请新用户注册赠送积分活动 1371055
关于科研通互助平台的介绍 1336111