Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 系统工程 程序设计语言 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不爱吃醋关注了科研通微信公众号
刚刚
2秒前
小蘑菇应助安陌煜采纳,获得10
4秒前
羊羊羊完成签到,获得积分10
5秒前
6秒前
义气雍发布了新的文献求助10
12秒前
TongKY完成签到 ,获得积分10
12秒前
隐形曼青应助QI采纳,获得10
12秒前
FF完成签到 ,获得积分10
13秒前
公西傲蕾完成签到,获得积分10
15秒前
17秒前
17秒前
安陌煜发布了新的文献求助30
19秒前
不远完成签到,获得积分10
19秒前
19秒前
拾捌发布了新的文献求助10
21秒前
upon完成签到,获得积分10
21秒前
QI完成签到,获得积分10
23秒前
24秒前
shining完成签到,获得积分10
24秒前
Tom完成签到,获得积分10
27秒前
27秒前
yunna_ning完成签到,获得积分10
28秒前
赘婿应助x5kyi采纳,获得30
29秒前
myheat发布了新的文献求助10
29秒前
卡丁完成签到 ,获得积分10
31秒前
秋寒陈酿完成签到,获得积分10
33秒前
义气雍发布了新的文献求助10
33秒前
Ava应助不爱洗澡的小玲采纳,获得10
34秒前
不配.应助RuiminXie采纳,获得10
36秒前
不爱吃醋发布了新的文献求助30
39秒前
42秒前
42秒前
43秒前
45秒前
Xulyun完成签到 ,获得积分10
45秒前
48秒前
可咳咳咳发布了新的文献求助10
48秒前
48秒前
我是老大应助科研通管家采纳,获得10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079