清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 程序设计语言 系统工程 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
11秒前
阿萌完成签到,获得积分10
22秒前
Eatanicecube发布了新的文献求助10
23秒前
digger2023完成签到 ,获得积分10
26秒前
29秒前
31秒前
fane发布了新的文献求助10
34秒前
36秒前
fane完成签到,获得积分10
42秒前
mochalv123完成签到 ,获得积分10
52秒前
uikymh完成签到 ,获得积分0
57秒前
细心的语蓉完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
可爱沛蓝完成签到 ,获得积分10
1分钟前
喂我完成签到 ,获得积分10
1分钟前
1分钟前
mgiwwk完成签到 ,获得积分10
1分钟前
zzj发布了新的文献求助10
1分钟前
克姑美完成签到 ,获得积分10
1分钟前
zzj关注了科研通微信公众号
2分钟前
海英完成签到,获得积分10
2分钟前
浮游应助xu采纳,获得10
2分钟前
3分钟前
可可发布了新的文献求助10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
xiaoblue完成签到,获得积分10
3分钟前
Jasperlee完成签到 ,获得积分10
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
老实的乐儿完成签到 ,获得积分10
4分钟前
mzhang2完成签到 ,获得积分10
4分钟前
酷酷的紫南完成签到 ,获得积分10
4分钟前
gwbk完成签到,获得积分10
5分钟前
LPPQBB应助科研通管家采纳,获得50
5分钟前
LPPQBB应助科研通管家采纳,获得50
5分钟前
5分钟前
6分钟前
Jsihao发布了新的文献求助10
6分钟前
浮游应助Jsihao采纳,获得10
6分钟前
科研通AI2S应助雪山飞龙采纳,获得10
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347134
求助须知:如何正确求助?哪些是违规求助? 4481469
关于积分的说明 13947767
捐赠科研通 4379570
什么是DOI,文献DOI怎么找? 2406477
邀请新用户注册赠送积分活动 1399078
关于科研通互助平台的介绍 1372002