已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 程序设计语言 系统工程 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
tom完成签到,获得积分10
4秒前
JamesPei应助oo采纳,获得10
6秒前
青山语发布了新的文献求助10
6秒前
王易云发布了新的文献求助10
7秒前
明理的天真完成签到 ,获得积分10
7秒前
ll发布了新的文献求助10
7秒前
迷路采珊完成签到,获得积分10
9秒前
10秒前
mashibeo应助HJJHJH采纳,获得10
10秒前
萧衡完成签到 ,获得积分10
10秒前
李爱国应助渴望者采纳,获得10
10秒前
12秒前
12秒前
尾状叶完成签到 ,获得积分10
12秒前
顺利代秋完成签到,获得积分20
12秒前
桐桐应助Monk采纳,获得10
12秒前
13秒前
13秒前
韩雨涛完成签到,获得积分20
14秒前
冰棒比冰冰完成签到 ,获得积分10
14秒前
wuhao发布了新的文献求助10
14秒前
14秒前
英俊的铭应助zdd采纳,获得30
15秒前
FashionBoy应助蟹蟹会说谢谢采纳,获得10
15秒前
15秒前
YYQ关注了科研通微信公众号
16秒前
Jasper应助jjy采纳,获得10
17秒前
虎哥0120发布了新的文献求助10
17秒前
韩雨涛发布了新的文献求助10
18秒前
marklee发布了新的文献求助10
19秒前
19秒前
19秒前
黄政超发布了新的文献求助10
20秒前
21秒前
21秒前
永远完成签到,获得积分10
22秒前
rubyyoyo发布了新的文献求助10
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443487
求助须知:如何正确求助?哪些是违规求助? 4553360
关于积分的说明 14241701
捐赠科研通 4475034
什么是DOI,文献DOI怎么找? 2452187
邀请新用户注册赠送积分活动 1443165
关于科研通互助平台的介绍 1418774