已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 程序设计语言 系统工程 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YKX完成签到,获得积分10
4秒前
桃花源的瓶起子完成签到 ,获得积分10
6秒前
bkagyin应助ayw采纳,获得10
6秒前
8秒前
己凡发布了新的文献求助10
8秒前
爆米花应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
13秒前
香蕉觅云应助niuniu采纳,获得10
14秒前
15秒前
15秒前
sirius发布了新的文献求助10
19秒前
21秒前
罗皮特完成签到,获得积分10
22秒前
24秒前
niuniu发布了新的文献求助10
26秒前
科研通AI5应助sirius采纳,获得10
27秒前
27秒前
27秒前
orixero应助hahah采纳,获得10
28秒前
Zcl发布了新的文献求助30
28秒前
所所应助wop111采纳,获得10
29秒前
32秒前
己凡发布了新的文献求助10
33秒前
wxnice完成签到,获得积分10
33秒前
niuniu完成签到,获得积分10
33秒前
香蕉觅云应助燚槿采纳,获得10
33秒前
科研通AI6应助慢慢采纳,获得10
35秒前
自由的梦露完成签到 ,获得积分10
35秒前
Jessica完成签到,获得积分10
36秒前
36秒前
37秒前
刘帅完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Modeling Ungrammaticality in Optimality Theory 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944455
求助须知:如何正确求助?哪些是违规求助? 4209377
关于积分的说明 13085135
捐赠科研通 3989004
什么是DOI,文献DOI怎么找? 2183965
邀请新用户注册赠送积分活动 1199322
关于科研通互助平台的介绍 1112234