亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 系统工程 程序设计语言 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey完成签到 ,获得积分10
14秒前
17秒前
李爱国应助任性沛槐采纳,获得10
44秒前
57秒前
任性沛槐发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
3655001Liu发布了新的文献求助10
1分钟前
silsotiscolor完成签到,获得积分10
1分钟前
Oculus完成签到 ,获得积分10
2分钟前
guan完成签到,获得积分10
2分钟前
脑洞疼应助maclogos采纳,获得10
2分钟前
乐乐应助zhangxiaopan采纳,获得10
4分钟前
FuRui发布了新的文献求助10
4分钟前
4分钟前
maclogos发布了新的文献求助10
4分钟前
5分钟前
zhangxiaopan发布了新的文献求助10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Ava应助科研通管家采纳,获得10
7分钟前
隐形曼青应助科研通管家采纳,获得10
7分钟前
gszy1975发布了新的文献求助10
8分钟前
烨枫晨曦完成签到,获得积分10
8分钟前
8分钟前
nbtzy完成签到,获得积分10
9分钟前
花落无声完成签到 ,获得积分10
9分钟前
dapan0622完成签到,获得积分10
10分钟前
冰西瓜完成签到 ,获得积分0
10分钟前
潇湘完成签到 ,获得积分10
10分钟前
zhangxiaopan发布了新的文献求助10
10分钟前
科研通AI2S应助专一的石头采纳,获得10
11分钟前
时尚的飞机完成签到,获得积分10
11分钟前
meng发布了新的文献求助10
11分钟前
量子星尘发布了新的文献求助10
12分钟前
赘婿应助zhangxiaopan采纳,获得10
12分钟前
积雪完成签到 ,获得积分10
12分钟前
13分钟前
zsc发布了新的文献求助10
13分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137976
求助须知:如何正确求助?哪些是违规求助? 4337505
关于积分的说明 13511628
捐赠科研通 4176350
什么是DOI,文献DOI怎么找? 2289973
邀请新用户注册赠送积分活动 1290503
关于科研通互助平台的介绍 1232416