清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Building Critical Testing Scenarios for Autonomous Driving from Real Accidents

计算机科学 分割 水准点(测量) 人工智能 集合(抽象数据类型) 图像分割 任务(项目管理) 计算机视觉 像素 数据挖掘 机器学习 工程类 大地测量学 程序设计语言 系统工程 地理
作者
Xudong Zhang,Yan Cai
标识
DOI:10.1145/3597926.3598070
摘要

One of the aims of the development and spread of autonomous driving technology is to reduce traffic accidents caused by human factors. But recently reported data on fatal accidents involving autonomous driving system (ADS) shows that this important goal has not been achieved. So there is an emerge requirement on more comprehensive and targeted testing especially on safe driving. In this paper, we propose an approach to automatically building critical testing scenarios from real-world accident data. Firstly, we propose a new model called M-CPS (Multi-channel Panoptic Segmentation) to extract the effective information from the accident record (such as images or videos), and separate the independent individuals of different traffic participants for further scene recovery. Compared with the traditional panoramic segmentation models, M-CPS model is able to effectively handle segmentation challenges due to the shooting angle, image quality, pixel overlap and other problems existing in the accident record. Next, the extracted core information is then connected with the virtual testing platform to generate the original scene set. Besides, we also design a mutation testing solution on the basis of the original scene set, thus greatly enriching the scene library for testing. In our experiments, the M-CPS model reaches a result of 66.1% PQ on CityScapes test set, shows that our model has only slight fluctuations on performance compared with the best benchmark model on pure panoptic segmentation task. It also reaches a result of 84.5% IoU for semantic segmentation branch and 40.3% mAP for instance segmentation branch on SHIFT dataset. Then we use UCF-Crime, CADP and US-Accidents datasets to generate the original and mutated scene set. Those generated scene sets are connected to Apollo and Carla simulation platforms to test ADS prototypes. We find three types of scenarios that can lead to accidents of ADS prototypes, which indicates that the existing ADS prototype has defects. Our solution provides a new possible direction for the recovery of key scenarios in ADS testing, and can improve the efficiency in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
27秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
不安的晓灵完成签到 ,获得积分10
55秒前
紫熊完成签到,获得积分10
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
LLLKAIXINGUO发布了新的文献求助10
2分钟前
zzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得30
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
Jessica完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
武雨寒完成签到 ,获得积分20
3分钟前
方白秋完成签到,获得积分10
3分钟前
LLLKAIXINGUO完成签到,获得积分10
4分钟前
4分钟前
冰凌心恋完成签到,获得积分10
4分钟前
娜娜完成签到 ,获得积分10
4分钟前
细雨听风完成签到,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
hyjcs完成签到,获得积分0
4分钟前
as9988776654完成签到 ,获得积分10
5分钟前
默默雪旋完成签到 ,获得积分10
5分钟前
5分钟前
chenyue233完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助50
6分钟前
花园里的蒜完成签到 ,获得积分0
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
loen完成签到,获得积分10
6分钟前
多亿点完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967