SLI-GNN: A Self-Learning-Input Graph Neural Network for Predicting Crystal and Molecular Properties

计算机科学 嵌入 图形 人工神经网络 最大熵 人工智能 欧几里得空间 理论计算机科学 机器学习 数据挖掘 算法 数学 计算机网络 盲信号分离 频道(广播) 纯数学
作者
Zhihao Dong,Jie Feng,Yujin Ji,Youyong Li
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:127 (28): 5921-5929 被引量:11
标识
DOI:10.1021/acs.jpca.3c01558
摘要

Since the structures of crystals/molecules are often non-Euclidean data in real space, graph neural networks (GNNs) are regarded as the most prospective approach for their capacity to represent materials by graph-based inputs and have emerged as an efficient and powerful tool in accelerating the discovery of new materials. Here, we propose a self-learning-input GNN framework, named self-learning-input GNN (SLI-GNN), to uniformly predict the properties for both crystals and molecules, in which we design a dynamic embedding layer to self-update the input features along with the iteration of the neural network and introduce the Infomax mechanism to maximize the average mutual information between the local features and the global features. Our SLI-GNN can reach ideal prediction accuracy with fewer inputs and more message passing neural network (MPNN) layers. The model evaluations on the Materials Project dataset and QM9 dataset verify that the overall performance of our SLI-GNN is comparable to that of other previously reported GNNs. Thus, our SLI-GNN framework presents excellent performance in material property prediction, which is thereby promising for accelerating the discovery of new materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
安详的白云完成签到 ,获得积分10
2秒前
xt完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
上官若男应助感动背包采纳,获得10
5秒前
8秒前
Re发布了新的文献求助10
8秒前
白笑石发布了新的文献求助10
9秒前
melody发布了新的文献求助10
12秒前
烟花应助FFFFF采纳,获得10
13秒前
星辰大海应助甜甜小蘑菇采纳,获得10
13秒前
15秒前
往返发布了新的文献求助10
15秒前
平常的仙人掌完成签到,获得积分10
16秒前
Re完成签到,获得积分10
17秒前
脆弱大拇哥完成签到,获得积分10
18秒前
18秒前
20秒前
铁观音发布了新的文献求助10
22秒前
陶征应助淡淡的元灵采纳,获得10
23秒前
24秒前
沉默的皮卡丘完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
orixero应助脆弱大拇哥采纳,获得10
26秒前
sdniuidifod发布了新的文献求助10
27秒前
科研通AI2S应助椒盐鲨鱼皮采纳,获得10
30秒前
CAOHOU应助veronicaaaa采纳,获得10
31秒前
32秒前
33秒前
今后应助杜熙凤采纳,获得10
36秒前
FFFFF发布了新的文献求助10
36秒前
搜集达人应助hhh采纳,获得10
39秒前
39秒前
白笑石完成签到,获得积分10
41秒前
迷路博完成签到,获得积分10
42秒前
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167