The future of neonatal lung ultrasound: Validation of an artificial intelligence model for interpreting lung scans. A multicentre prospective diagnostic study

医学 胎龄 新生儿学 切断 持续气道正压 前瞻性队列研究 接收机工作特性 肺超声 超声波 呼吸急促 放射科 内科学 怀孕 遗传学 物理 量子力学 阻塞性睡眠呼吸暂停 生物 心动过速
作者
Alessandro Perri,Annamaria Sbordone,Maria Letizia Patti,Stefano Nobile,Chiara Tirone,Lucia Giordano,Milena Tana,Vito D’Andrea,Francesca Priolo,Francesca Serrao,Riccardo Riccardi,Giorgia Prontera,Jacopo Lenkowicz,Luca Boldrini,Giovanni Vento
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (9): 2610-2618 被引量:1
标识
DOI:10.1002/ppul.26563
摘要

Abstract Background Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU. Methods Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4–6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS. Results We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome “need for surfactant therapy”, results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels. Conclusions This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LJYii发布了新的文献求助10
1秒前
Akim应助cherry采纳,获得10
1秒前
1秒前
喜庆完成签到,获得积分20
1秒前
等待甜瓜发布了新的文献求助10
2秒前
田様应助Xxxnnian采纳,获得10
3秒前
4秒前
4秒前
dr.yan完成签到 ,获得积分10
4秒前
he发布了新的文献求助10
5秒前
迷人素应助健壮问兰采纳,获得10
5秒前
Owen应助苏素采纳,获得10
6秒前
充电宝应助yixia222采纳,获得10
6秒前
6秒前
hj完成签到,获得积分10
8秒前
赘婿应助ylh采纳,获得10
8秒前
9秒前
LisaZhuo完成签到,获得积分10
9秒前
9秒前
9秒前
机灵柚子发布了新的文献求助30
10秒前
11秒前
12秒前
12秒前
科研混子发布了新的文献求助10
12秒前
egg发布了新的文献求助10
12秒前
13秒前
FashionBoy应助刘娟采纳,获得10
13秒前
hades发布了新的文献求助10
13秒前
嗯嗯完成签到,获得积分10
14秒前
wanci应助超A采纳,获得10
15秒前
15秒前
15秒前
15秒前
Sandy发布了新的文献求助20
15秒前
SciGPT应助嗒嗒嗒薇采纳,获得10
15秒前
15秒前
16秒前
17秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083403
求助须知:如何正确求助?哪些是违规求助? 2736768
关于积分的说明 7542379
捐赠科研通 2386033
什么是DOI,文献DOI怎么找? 1265316
科研通“疑难数据库(出版商)”最低求助积分说明 613035
版权声明 597816