The future of neonatal lung ultrasound: Validation of an artificial intelligence model for interpreting lung scans. A multicentre prospective diagnostic study

医学 胎龄 新生儿学 切断 持续气道正压 前瞻性队列研究 接收机工作特性 肺超声 超声波 呼吸急促 放射科 内科学 怀孕 物理 阻塞性睡眠呼吸暂停 生物 量子力学 遗传学 心动过速
作者
Alessandro Perri,Annamaria Sbordone,Maria Letizia Patti,Stefano Nobile,Chiara Tirone,Lucia Giordano,Milena Tana,Vito D’Andrea,Francesca Priolo,Francesca Serrao,Riccardo Riccardi,Giorgia Prontera,Jacopo Lenkowicz,Luca Boldrini,Giovanni Vento
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (9): 2610-2618 被引量:1
标识
DOI:10.1002/ppul.26563
摘要

Abstract Background Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU. Methods Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4–6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS. Results We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome “need for surfactant therapy”, results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels. Conclusions This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SMLW完成签到,获得积分10
1秒前
科目三应助小瑞采纳,获得10
1秒前
抹茶肥肠完成签到,获得积分10
1秒前
科目三应助伶俐皮卡丘采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助100
2秒前
2秒前
竹子发布了新的文献求助10
2秒前
搜集达人应助Morois采纳,获得10
3秒前
3秒前
哆啦A涵发布了新的文献求助10
3秒前
Ava应助Mikey采纳,获得10
4秒前
4秒前
4秒前
077发布了新的文献求助10
4秒前
4秒前
己见发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
徐昊雯发布了新的文献求助10
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
mai完成签到,获得积分20
7秒前
AJY发布了新的文献求助10
7秒前
zuhayr发布了新的文献求助10
7秒前
8秒前
苗逍遥完成签到,获得积分20
8秒前
希望天下0贩的0应助zxzb采纳,获得10
8秒前
970465242@qq.com完成签到,获得积分10
8秒前
8秒前
xss关闭了xss文献求助
8秒前
8秒前
缘木完成签到,获得积分20
8秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437