The future of neonatal lung ultrasound: Validation of an artificial intelligence model for interpreting lung scans. A multicentre prospective diagnostic study

医学 胎龄 新生儿学 切断 持续气道正压 前瞻性队列研究 接收机工作特性 肺超声 超声波 呼吸急促 放射科 内科学 怀孕 物理 阻塞性睡眠呼吸暂停 生物 量子力学 遗传学 心动过速
作者
Alessandro Perri,Annamaria Sbordone,Maria Letizia Patti,Stefano Nobile,Chiara Tirone,Lucia Giordano,Milena Tana,Vito D’Andrea,Francesca Priolo,Francesca Serrao,Riccardo Riccardi,Giorgia Prontera,Jacopo Lenkowicz,Luca Boldrini,Giovanni Vento
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (9): 2610-2618 被引量:1
标识
DOI:10.1002/ppul.26563
摘要

Abstract Background Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU. Methods Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4–6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS. Results We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome “need for surfactant therapy”, results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels. Conclusions This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞云发布了新的文献求助10
1秒前
byyyy完成签到,获得积分10
1秒前
Liu完成签到,获得积分10
1秒前
2秒前
jim_hacker发布了新的文献求助10
2秒前
现代绮玉完成签到,获得积分10
3秒前
xiao刘发布了新的文献求助10
3秒前
Coldpal完成签到,获得积分10
4秒前
wmw发布了新的文献求助10
4秒前
大哥大姐帮帮忙完成签到,获得积分10
4秒前
5秒前
Lucas应助别偷我增肌粉采纳,获得10
5秒前
科目三应助摆烂的雨雨采纳,获得10
5秒前
丁元英完成签到,获得积分10
6秒前
6秒前
Jasper应助lay采纳,获得10
6秒前
6秒前
7秒前
7秒前
感动城发布了新的文献求助10
7秒前
甜甜的莺完成签到 ,获得积分10
8秒前
量子力学完成签到,获得积分10
8秒前
咚咚咚完成签到,获得积分10
8秒前
9秒前
沐青应助缥缈的采蓝采纳,获得20
9秒前
xsy完成签到,获得积分10
9秒前
wsh071117发布了新的文献求助10
9秒前
璟晔发布了新的文献求助10
10秒前
晨珂完成签到,获得积分10
10秒前
milkdrink发布了新的文献求助10
10秒前
11秒前
青菜发布了新的文献求助30
12秒前
Timon完成签到,获得积分10
12秒前
Z1完成签到,获得积分10
12秒前
12秒前
小申发布了新的文献求助10
13秒前
13秒前
七曜完成签到,获得积分20
13秒前
小太阳完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968964
求助须知:如何正确求助?哪些是违规求助? 3513877
关于积分的说明 11170569
捐赠科研通 3249201
什么是DOI,文献DOI怎么找? 1794692
邀请新用户注册赠送积分活动 875297
科研通“疑难数据库(出版商)”最低求助积分说明 804755