The future of neonatal lung ultrasound: Validation of an artificial intelligence model for interpreting lung scans. A multicentre prospective diagnostic study

医学 胎龄 新生儿学 切断 持续气道正压 前瞻性队列研究 接收机工作特性 肺超声 超声波 呼吸急促 放射科 内科学 怀孕 物理 阻塞性睡眠呼吸暂停 生物 量子力学 遗传学 心动过速
作者
Alessandro Perri,Annamaria Sbordone,Maria Letizia Patti,Stefano Nobile,Chiara Tirone,Lucia Giordano,Milena Tana,Vito D’Andrea,Francesca Priolo,Francesca Serrao,Riccardo Riccardi,Giorgia Prontera,Jacopo Lenkowicz,Luca Boldrini,Giovanni Vento
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (9): 2610-2618 被引量:1
标识
DOI:10.1002/ppul.26563
摘要

Abstract Background Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU. Methods Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4–6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS. Results We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome “need for surfactant therapy”, results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels. Conclusions This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋季完成签到,获得积分10
1秒前
wwb完成签到,获得积分10
1秒前
张自信完成签到,获得积分10
2秒前
华仔应助VDC采纳,获得10
2秒前
嘟嘟完成签到,获得积分10
3秒前
卡卡完成签到,获得积分10
3秒前
3秒前
十三发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
甩看文献发布了新的文献求助10
4秒前
wang完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
LONG完成签到,获得积分10
6秒前
6秒前
甜蜜秋蝶完成签到,获得积分10
6秒前
7秒前
TT发布了新的文献求助10
8秒前
啊实打实发布了新的文献求助10
8秒前
yam001发布了新的文献求助30
9秒前
Stanley完成签到,获得积分10
9秒前
LONG发布了新的文献求助10
9秒前
亮亮发布了新的文献求助50
9秒前
LZQ应助细心的小蜜蜂采纳,获得30
10秒前
艺玲发布了新的文献求助10
10秒前
小二郎应助Seven采纳,获得10
10秒前
设计狂魔完成签到,获得积分10
10秒前
10秒前
11秒前
韭黄发布了新的文献求助10
11秒前
科研小白完成签到,获得积分10
11秒前
12秒前
9℃发布了新的文献求助10
12秒前
甩看文献完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762