The future of neonatal lung ultrasound: Validation of an artificial intelligence model for interpreting lung scans. A multicentre prospective diagnostic study

医学 胎龄 新生儿学 切断 持续气道正压 前瞻性队列研究 接收机工作特性 肺超声 超声波 呼吸急促 放射科 内科学 怀孕 物理 阻塞性睡眠呼吸暂停 生物 量子力学 遗传学 心动过速
作者
Alessandro Perri,Annamaria Sbordone,Maria Letizia Patti,Stefano Nobile,Chiara Tirone,Lucia Giordano,Milena Tana,Vito D’Andrea,Francesca Priolo,Francesca Serrao,Riccardo Riccardi,Giorgia Prontera,Jacopo Lenkowicz,Luca Boldrini,Giovanni Vento
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (9): 2610-2618 被引量:1
标识
DOI:10.1002/ppul.26563
摘要

Abstract Background Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU. Methods Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4–6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS. Results We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome “need for surfactant therapy”, results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels. Conclusions This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鉴湖完成签到,获得积分10
1秒前
001完成签到,获得积分10
1秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
1秒前
efengmo完成签到,获得积分10
2秒前
天真南松完成签到,获得积分10
3秒前
讨厌下雨天完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
lii完成签到,获得积分10
7秒前
哦哦完成签到,获得积分10
8秒前
ninomae完成签到 ,获得积分10
11秒前
渴望者完成签到,获得积分10
11秒前
lzl007完成签到 ,获得积分10
12秒前
只争朝夕完成签到,获得积分10
14秒前
yin完成签到,获得积分10
14秒前
abbytang完成签到 ,获得积分10
14秒前
优雅沛文完成签到 ,获得积分10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
sjw525完成签到,获得积分10
16秒前
小公牛完成签到 ,获得积分10
18秒前
李正纲完成签到 ,获得积分10
19秒前
Criminology34应助1101592875采纳,获得10
24秒前
24秒前
25秒前
孟小宝完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
mojomars完成签到,获得积分0
27秒前
ryq327完成签到 ,获得积分10
28秒前
俏皮的老三完成签到 ,获得积分10
32秒前
小高同学完成签到,获得积分10
33秒前
潇洒的蝴蝶完成签到,获得积分10
34秒前
dldldl完成签到,获得积分10
34秒前
35秒前
养鸟的人完成签到,获得积分10
36秒前
Tin完成签到,获得积分10
36秒前
36秒前
Moonpie完成签到 ,获得积分10
37秒前
如意雨雪完成签到 ,获得积分10
39秒前
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590