亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The future of neonatal lung ultrasound: Validation of an artificial intelligence model for interpreting lung scans. A multicentre prospective diagnostic study

医学 胎龄 新生儿学 切断 持续气道正压 前瞻性队列研究 接收机工作特性 肺超声 超声波 呼吸急促 放射科 内科学 怀孕 物理 阻塞性睡眠呼吸暂停 生物 量子力学 遗传学 心动过速
作者
Alessandro Perri,Annamaria Sbordone,Maria Letizia Patti,Stefano Nobile,Chiara Tirone,Lucia Giordano,Milena Tana,Vito D’Andrea,Francesca Priolo,Francesca Serrao,Riccardo Riccardi,Giorgia Prontera,Jacopo Lenkowicz,Luca Boldrini,Giovanni Vento
出处
期刊:Pediatric Pulmonology [Wiley]
卷期号:58 (9): 2610-2618 被引量:1
标识
DOI:10.1002/ppul.26563
摘要

Abstract Background Artificial intelligence (AI) is a promising field in the neonatal field. We focused on lung ultrasound (LU), a useful tool for the neonatologist. Our aim was to train a neural network to create a model able to interpret LU. Methods Our multicentric, prospective study included newborns with gestational age (GA) ≥ 33 + 0 weeks with early tachypnea/dyspnea/oxygen requirements. For each baby, three LU were performed: within 3 h of life (T0), at 4–6 h of life (T1), and in the absence of respiratory support (T2). Each scan was processed to extract the region of interest used to train a neural network to classify it according to the LU score (LUS). We assessed sensitivity, specificity, positive and negative predictive value of the AI model's scores in predicting the need for respiratory assistance with nasal continuous positive airway pressure and for surfactant, compared to an already studied and established LUS. Results We enrolled 62 newborns (GA = 36 ± 2 weeks). In the prediction of the need for CPAP, we found a cutoff of 6 (at T0) and 5 (at T1) for both the neonatal lung ultrasound score (nLUS) and AI score (AUROC 0.88 for T0 AI model, 0.80 for T1 AI model). For the outcome “need for surfactant therapy”, results in terms of area under receiver operator characteristic (AUROC) are 0.84 for T0 AI model and 0.89 for T1 AI model. In the prediction of surfactant therapy, we found a cutoff of 9 for both scores at T0, at T1 the nLUS cutoff was 6, while the AI's one was 5. Classification accuracy was good both at the image and class levels. Conclusions This is, to our knowledge, the first attempt to use an AI model to interpret early neonatal LUS and can be extremely useful for neonatologists in the clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
38秒前
orixero应助材料生采纳,获得10
1分钟前
1分钟前
Thi发布了新的文献求助10
1分钟前
xinghui完成签到,获得积分10
2分钟前
路漫漫其修远兮完成签到 ,获得积分10
2分钟前
2分钟前
材料生发布了新的文献求助10
2分钟前
香蕉觅云应助Ee采纳,获得10
3分钟前
喷火球完成签到,获得积分10
3分钟前
标致金毛发布了新的文献求助10
3分钟前
123456完成签到,获得积分10
3分钟前
喷火球发布了新的文献求助10
4分钟前
瑞水南郡完成签到,获得积分10
4分钟前
FashionBoy应助rose采纳,获得10
4分钟前
4分钟前
rose发布了新的文献求助10
4分钟前
4分钟前
Ee发布了新的文献求助10
4分钟前
4分钟前
JamesPei应助陈杰采纳,获得10
4分钟前
4分钟前
Suc发布了新的文献求助10
4分钟前
赘婿应助材料生采纳,获得10
4分钟前
香蕉觅云应助芳芳酱采纳,获得10
5分钟前
Suc关闭了Suc文献求助
5分钟前
拾英发布了新的文献求助10
5分钟前
5分钟前
芳芳酱发布了新的文献求助10
5分钟前
ding应助Hayat采纳,获得20
5分钟前
Owen应助拾英采纳,获得10
5分钟前
5分钟前
材料生发布了新的文献求助10
5分钟前
搜集达人应助材料生采纳,获得10
6分钟前
Zhy驳回了852应助
6分钟前
情怀应助苹果小玉采纳,获得10
6分钟前
wanci应助被杖杀的茯苓采纳,获得10
6分钟前
6分钟前
Thi发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568207
求助须知:如何正确求助?哪些是违规求助? 4652651
关于积分的说明 14701915
捐赠科研通 4594523
什么是DOI,文献DOI怎么找? 2521025
邀请新用户注册赠送积分活动 1492879
关于科研通互助平台的介绍 1463696