Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments

伊利石 元动力学 矿化(土壤科学) 化学 粘土矿物 碳酸盐 矿物学 化学工程 分子动力学 化学物理 计算化学 有机化学 氮气 工程类
作者
Xuguang Dai,Chongtao Wei,Meng Wang,Junjian Zhang,Xiaoqi Wang,Xuan Shi,Veerle Vandeginste
出处
期刊:Energy [Elsevier]
卷期号:283: 128467-128467 被引量:8
标识
DOI:10.1016/j.energy.2023.128467
摘要

Clay minerals have the potential to capture anthropogenic CO2 emissions permanently and safely. Understanding the kinetics of cation leaching and carbonate formation, as well as changes in clay structure, has resource and environmental implications. However, metadynamics mechanism and relevant structural changes in representative clay minerals exposed to supercritical carbon dioxide (scCO2) are rarely studied in current research. In this work, ReaxFF molecular dynamics simulation in combination with scCO2‒H2O‒illite experiments at 10 MPa and 333 K were carried out to investigate the mechanisms of mineralization and structure alteration under geological conditions. The results show that interlayer K+ cations were leached out due to surface non-bridging oxygen protonation, subsequently bonding with HCO3− and forming K2CO3 molecules at the surface. Upon analyzing the chemical and structural results of experiments, carbonate precipitation and accumulation reduce storage space and modify the composition of illite, but the octahedral and tetrahedral sheets of the illite are structurally stable. The efficiency of mineralization is typically dominated by the exposed surface, where sufficient cations can be provided to enhance interactions at the illite/liquid interface. In comparison to a decrease in plane porosity of 27.3%, the mineralization degree with values between 15.22% and 33.12% is comparable and acceptable. These findings present a non-structural mechanism in clay minerals that might have critical influence on CO2 geo-sequestration in shale gas reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗子完成签到 ,获得积分10
刚刚
CodeCraft应助小小飞采纳,获得10
刚刚
JamesPei应助JUSTs0so采纳,获得10
2秒前
Beth完成签到,获得积分10
2秒前
粥粥发布了新的文献求助10
3秒前
3秒前
庞威完成签到 ,获得积分10
3秒前
4秒前
吕春雨完成签到,获得积分10
4秒前
Grayball应助ccc采纳,获得10
4秒前
5秒前
5秒前
勖勖完成签到,获得积分10
5秒前
邵裘发布了新的文献求助10
5秒前
5秒前
饕餮完成签到,获得积分10
6秒前
7秒前
wangg发布了新的文献求助10
7秒前
大个应助勤恳的依丝采纳,获得10
8秒前
星星发布了新的文献求助10
8秒前
spray发布了新的文献求助30
8秒前
LZJ完成签到,获得积分10
8秒前
9秒前
YE发布了新的文献求助30
9秒前
MHB应助叫滚滚采纳,获得10
10秒前
wzxxxx发布了新的文献求助10
10秒前
斯文败类应助勤劳傲晴采纳,获得10
11秒前
shilong.yang发布了新的文献求助10
11秒前
momo完成签到,获得积分10
12秒前
wxp_bioinfo完成签到,获得积分10
13秒前
13秒前
桐桐应助wangg采纳,获得10
13秒前
Jun完成签到,获得积分10
14秒前
芝士的酒发布了新的文献求助50
14秒前
15秒前
赘婿应助复杂的问玉采纳,获得30
15秒前
16秒前
16秒前
17秒前
端庄白开水完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808