Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments

伊利石 元动力学 矿化(土壤科学) 化学 粘土矿物 碳酸盐 矿物学 化学工程 分子动力学 化学物理 计算化学 有机化学 工程类 氮气
作者
Xuguang Dai,Chongtao Wei,Meng Wang,Junjian Zhang,Xiaoqi Wang,Xuan Shi,Veerle Vandeginste
出处
期刊:Energy [Elsevier]
卷期号:283: 128467-128467 被引量:8
标识
DOI:10.1016/j.energy.2023.128467
摘要

Clay minerals have the potential to capture anthropogenic CO2 emissions permanently and safely. Understanding the kinetics of cation leaching and carbonate formation, as well as changes in clay structure, has resource and environmental implications. However, metadynamics mechanism and relevant structural changes in representative clay minerals exposed to supercritical carbon dioxide (scCO2) are rarely studied in current research. In this work, ReaxFF molecular dynamics simulation in combination with scCO2‒H2O‒illite experiments at 10 MPa and 333 K were carried out to investigate the mechanisms of mineralization and structure alteration under geological conditions. The results show that interlayer K+ cations were leached out due to surface non-bridging oxygen protonation, subsequently bonding with HCO3− and forming K2CO3 molecules at the surface. Upon analyzing the chemical and structural results of experiments, carbonate precipitation and accumulation reduce storage space and modify the composition of illite, but the octahedral and tetrahedral sheets of the illite are structurally stable. The efficiency of mineralization is typically dominated by the exposed surface, where sufficient cations can be provided to enhance interactions at the illite/liquid interface. In comparison to a decrease in plane porosity of 27.3%, the mineralization degree with values between 15.22% and 33.12% is comparable and acceptable. These findings present a non-structural mechanism in clay minerals that might have critical influence on CO2 geo-sequestration in shale gas reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助熊涛采纳,获得10
刚刚
1秒前
12完成签到,获得积分10
1秒前
1秒前
2秒前
wk发布了新的文献求助10
3秒前
旺旺发布了新的文献求助10
4秒前
chy完成签到 ,获得积分10
4秒前
专注寻菱发布了新的文献求助10
4秒前
涨涨涨发布了新的文献求助10
4秒前
自信书文完成签到 ,获得积分10
5秒前
华仔应助123456采纳,获得10
6秒前
ZYP完成签到,获得积分10
6秒前
嘟噜完成签到 ,获得积分10
7秒前
7秒前
昭奚发布了新的文献求助10
7秒前
张小圆完成签到,获得积分10
7秒前
7秒前
卡卡发布了新的文献求助30
8秒前
8秒前
9秒前
wangpinyl发布了新的文献求助10
9秒前
AAAAA完成签到,获得积分20
9秒前
9秒前
9秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Jiayi发布了新的文献求助10
12秒前
熊涛发布了新的文献求助10
13秒前
23652发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
可爱的函函应助cp1690采纳,获得10
13秒前
14秒前
火羊宝发布了新的文献求助10
14秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443221
求助须知:如何正确求助?哪些是违规求助? 4553119
关于积分的说明 14241113
捐赠科研通 4474726
什么是DOI,文献DOI怎么找? 2452134
邀请新用户注册赠送积分活动 1443079
关于科研通互助平台的介绍 1418721