Tailoring the d-band electronic structure of deficient LaMn0.3Co0.7O3-δ perovskite nanofibers for boosting oxygen electrocatalysis in Zn-Air batteries

双功能 电催化剂 析氧 催化作用 钙钛矿(结构) 阴极 化学 氧气 金属 电子能带结构 纳米纤维 材料科学 化学工程 无机化学 纳米技术 物理化学 电极 结晶学 电化学 物理 有机化学 工程类 量子力学 生物化学
作者
Xinyu Gao,Huan Liu,Yong Wang,Jiahui Guo,Xingwei Sun,Weiyan Sun,Haitao Zhao,Jie Bai,Chunping Li
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:650 (Pt A): 951-960 被引量:20
标识
DOI:10.1016/j.jcis.2023.07.008
摘要

The development and design of efficient bifunctional electrocatalysts towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial for rechargeable Zinc-air batteries (ZABs). Optimizing the d-band structure of active metal center in perovskite oxides is an effective method to enhance ORR/OER activity by accelerating the rate-determining step. Herein, we report a deficient method to optimize the d-band structure of Co ions in LaMn0.3Co0.7O3-δ (LMCO-2) perovskite nanofibers, which regulates the mutual effect between B-site Co ions and reactive oxygen intermediates. It is proved by experiment and theoretical calculation that the d-band center (Md) of transition metal ions in LMCO-2 is moved up and the electron filling number of eg orbital in B site is 1.01, thus leading to the reduction of Gibbs free energy required for ORR rate-determining step (OH*→H2O*) to 0.22 eV and promoting reaction proceeds. In this manner, LMCO-2 showed good bifunctional oxygen electrocatalytic activity, with a half-wave potential of 0.71 V vs. RHE. Furthermore, the high specific capacity of 811.54 mAh g-1 and power density of 326.56 mW cm-2 were obtained by using LMCO-2 as the cathode catalyst for ZABs. This study proved the feasibility of d-band structure regulation to enhance the electrocatalytic activity of perovskite oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sansan发布了新的文献求助10
刚刚
斯文莺发布了新的文献求助10
刚刚
Reid完成签到 ,获得积分10
刚刚
kmelo发布了新的文献求助10
1秒前
淡然夏天关注了科研通微信公众号
1秒前
科研小呆瓜完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
3秒前
科研通AI6应助迷人书蝶采纳,获得10
4秒前
李健应助阿雷采纳,获得10
4秒前
科研通AI6应助xixi采纳,获得10
5秒前
linlinyilulvdeng完成签到,获得积分10
5秒前
科研通AI2S应助尹辉采纳,获得10
5秒前
爱听歌老1完成签到,获得积分10
5秒前
6秒前
沈若南应助灯灯采纳,获得10
6秒前
7秒前
7秒前
7秒前
111发布了新的文献求助10
7秒前
7秒前
7秒前
谨慎的灵完成签到 ,获得积分20
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
勇敢牛牛发布了新的文献求助10
9秒前
9秒前
乐正飞风完成签到,获得积分20
10秒前
11秒前
11秒前
xueluxin完成签到 ,获得积分10
11秒前
11秒前
MKY发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565