Tailoring the d-band electronic structure of deficient LaMn0.3Co0.7O3-δ perovskite nanofibers for boosting oxygen electrocatalysis in Zn-Air batteries

双功能 电催化剂 析氧 催化作用 钙钛矿(结构) 阴极 化学 氧气 金属 电子能带结构 纳米纤维 材料科学 化学工程 无机化学 纳米技术 物理化学 电极 结晶学 电化学 物理 有机化学 工程类 量子力学 生物化学
作者
Xinyu Gao,Huan Liu,Yong Wang,Jiahui Guo,Xingwei Sun,Weiyan Sun,Haitao Zhao,Jie Bai,Chunping Li
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:650 (Pt A): 951-960 被引量:20
标识
DOI:10.1016/j.jcis.2023.07.008
摘要

The development and design of efficient bifunctional electrocatalysts towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial for rechargeable Zinc-air batteries (ZABs). Optimizing the d-band structure of active metal center in perovskite oxides is an effective method to enhance ORR/OER activity by accelerating the rate-determining step. Herein, we report a deficient method to optimize the d-band structure of Co ions in LaMn0.3Co0.7O3-δ (LMCO-2) perovskite nanofibers, which regulates the mutual effect between B-site Co ions and reactive oxygen intermediates. It is proved by experiment and theoretical calculation that the d-band center (Md) of transition metal ions in LMCO-2 is moved up and the electron filling number of eg orbital in B site is 1.01, thus leading to the reduction of Gibbs free energy required for ORR rate-determining step (OH*→H2O*) to 0.22 eV and promoting reaction proceeds. In this manner, LMCO-2 showed good bifunctional oxygen electrocatalytic activity, with a half-wave potential of 0.71 V vs. RHE. Furthermore, the high specific capacity of 811.54 mAh g-1 and power density of 326.56 mW cm-2 were obtained by using LMCO-2 as the cathode catalyst for ZABs. This study proved the feasibility of d-band structure regulation to enhance the electrocatalytic activity of perovskite oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zz发布了新的文献求助20
1秒前
JayL完成签到,获得积分10
1秒前
2秒前
萤照夜清发布了新的文献求助10
3秒前
3秒前
付志敏完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
机灵水卉发布了新的文献求助10
8秒前
科研通AI2S应助永远55度采纳,获得10
9秒前
念知秋完成签到,获得积分10
10秒前
10秒前
tinale_huang完成签到,获得积分10
11秒前
11秒前
南音发布了新的文献求助10
11秒前
11秒前
qin发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
碧蓝青梦发布了新的文献求助10
14秒前
14秒前
南音发布了新的文献求助10
15秒前
展锋发布了新的文献求助10
15秒前
南音发布了新的文献求助10
15秒前
16秒前
SciGPT应助一二采纳,获得10
16秒前
16秒前
17秒前
18秒前
19秒前
qiqi完成签到 ,获得积分10
20秒前
20秒前
li发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752350
求助须知:如何正确求助?哪些是违规求助? 5473586
关于积分的说明 15373469
捐赠科研通 4891370
什么是DOI,文献DOI怎么找? 2630367
邀请新用户注册赠送积分活动 1578540
关于科研通互助平台的介绍 1534511