Process Monitoring and Fault Prediction of Papermaking by Learning From Imperfect Data

造纸 断层(地质) 过程(计算) 计算机科学 水准点(测量) 高斯过程 人工智能 机器学习 数据挖掘 工程类 高斯分布 物理 制浆造纸工业 大地测量学 量子力学 地理 地质学 地震学 操作系统
作者
Zhenglei He,Guojian Chen,Mengna Hong,Qingang Xiong,Xianyi Zeng,Yi Man
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:5
标识
DOI:10.1109/tase.2023.3290552
摘要

Fault prediction is increasingly concerned in the industry due to complexity grows in the production process. Paper break, the most common process fault of papermaking, risks paper mills enormously on cost and efficiency. Data derived from papermaking workshop always involves imperfect issues of mismatching, losing, human intervention etc. which mask the inherent hints about paper break, prevent early warn. This study proposed pretreatment processes on data upon papermaking knowledge and analysis of paper breaks, exploited random forest to extract interrelated features, and establish a prediction model of paper break based on Gaussian mixture models (GMM) and Mahalanobis distance (MD). GMM clusters the datasets of extracted variable normally performed to form the health benchmark, and utilize MD to analyze the deviation of real time state of papermaking process from health, and determine whether to warn the operators of paper break through kernel density estimation. The verification results showed that the proposed model has a fault prediction accuracy of 76.8% and a recall rate of 72.5%, which allows paper break associated anomalous data to be observed in advance, providing valuable time for subsequent fault diagnosis. Note to Practitioners —This article is motivated by the problems of paper break in the papermaking process, which can be applied to fault prediction in papermaking and other associated complex process industries. Due to technical limitations, it is difficult to monitor all parameters of the entire production process to prevent faults from the manufacturing processes. This paper exploits existing imperfect production data, and analyzes breaking mechanisms in the papermaking process to interpret the meaning of certain data. It is obtained variables closely relating to production through data analysis and a framework consisting of health benchmark with deviation determination. Studies on corresponding actual production cases validated that the approach is feasible. The paper breaks can be predicted, but there are still some faults of which mechanisms are too unclear to support prediction. In the future research, it is encouraged to improve the accuracy and timeliness of prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxz发布了新的文献求助10
1秒前
苦海发布了新的文献求助10
4秒前
5秒前
5秒前
FashionBoy应助江上清风游采纳,获得10
5秒前
6秒前
10秒前
10秒前
10秒前
Chawee发布了新的文献求助10
11秒前
达蒙璃完成签到 ,获得积分0
13秒前
13秒前
小李完成签到,获得积分10
14秒前
14秒前
16秒前
研友_Z72jyn发布了新的文献求助10
17秒前
I7发布了新的文献求助10
17秒前
17秒前
CXY完成签到,获得积分10
17秒前
21秒前
白瑾发布了新的文献求助10
22秒前
害羞的裘发布了新的文献求助10
24秒前
思源应助Oying采纳,获得10
25秒前
25秒前
今后应助梨花弦外雨采纳,获得10
26秒前
搜集达人应助祯果粒采纳,获得10
29秒前
忧虑的靖巧完成签到 ,获得积分10
29秒前
科研通AI2S应助XYX采纳,获得10
29秒前
30秒前
32秒前
nowfitness完成签到,获得积分10
32秒前
souther完成签到,获得积分0
32秒前
33秒前
345543发布了新的文献求助10
34秒前
34秒前
潇洒的小鸽子完成签到 ,获得积分10
34秒前
I7完成签到,获得积分10
37秒前
迅速的八宝粥完成签到 ,获得积分10
37秒前
37秒前
飞羽发布了新的文献求助10
38秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378720
求助须知:如何正确求助?哪些是违规求助? 2994242
关于积分的说明 8758590
捐赠科研通 2678801
什么是DOI,文献DOI怎么找? 1467379
科研通“疑难数据库(出版商)”最低求助积分说明 678640
邀请新用户注册赠送积分活动 670251