代谢组学
环境化学
毒性
光合作用
生物
蛋白质组学
化学
生物信息学
植物
生物化学
基因
有机化学
作者
Ayesha Karamat,Rouzbeh Tehrani,Gregory D. Foster,Benoît Van Aken
标识
DOI:10.1080/15226514.2023.2232874
摘要
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of toxic manmade compounds that have been used in many industrial and household products. Dispersion of PFAS in the environment has raised concerns because of their persistence and toxicity for living organisms. Both terrestrial and aquatic plants have been shown to take up PFAS from contaminated soil and groundwater, and to accumulate these compounds inside their tissues. Although PFAS generally exert a low toxicity on plants at environmentally relevant concentrations, they frequently impact biomass growth and photosynthetic activity at higher levels. Uptake, translocation, and toxicity of PFAS in plants have been well covered in literature. Although less attention has been given to the molecular mechanisms underlying the plant response to PFAS, recent studies based on -omics approaches indicate that PFAS affects the plant metabolism even a low concentration. The objective of this review is to summarize the current knowledge about the effects of PFAS on plants at the molecular level. Results from recent transcriptomics, proteomics, and metabolomics studies show that low levels of PFAS induce oxidative stress and affect multiple plant functions and processes, including photosynthesis and energy metabolism. These potentially harmful effects trigger activation of defense mechanisms.Although the uptake, translocation, and toxicity of per- and polyfluoroalkyl substances (PFAS) in plants have been well covered in literature, less attention has been given to the molecular mechanisms underlying the plant response to PFAS. Using results from recent transcriptomics, proteomics, and metabolomics studies, this review article aims to summarize the current knowledge about the effects of PFAS on plants at the molecular level. Several reviews have been published on the effects of PFAS on plants, however, none have focused specifically on the molecular mechanisms of PFAS phytotoxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI